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Assumptions of Foreman-Mackey et al. 2014

Conditional independence – We assume that every object in the
catalog is a conditionally independent draw from the observable
occurrence rate density.

Lack of false positives – In our inferences, we assume that all of the
candidates in the catalog are true exoplanets.
Known observational uncertainties – To apply the importance
sampling approximation to the published catalog, we assume that the
measurement uncertainties are known and, in this case, Gaussian.
Given empirical detection efficiency – Petigura et al. (2013)
determined the end-to-end detection efficiency of their planet
detection pipeline as a function of true period and radius by injecting
synthetic signals into real light curves and testing recovery.
Smooth rate function – Throughout our analysis, we make the prior
assumption that the occurrence rate density is a smooth function of
logarithmic period and radius.
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Planet parameters and detection efficiency from Petigura et al.
(2013)
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Goals of Foreman-Mackey et al. 2014

1 Constrain the rate density of small exoplanets orbiting Sun-like stars.

2 Place probabilistic constraints on the rate density of Earth analogs Γ⊕,
defined as the expected number of planets per star per natural
logarithmic bin in period and radius, evaluated at the period and
radius of Earth.
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Rate – indicate the dimensionless expectation value of a Poisson process.
Rate density – a quantity that must be integrated over a finite bin in
period and radius to deliver a rate.
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Traditional approach

Γθ(w) – occurrence rate density Γ (parameterized by the parameters θ) as
a function of the physical parameters w (orbital period, planetary radius,
etc.)

wk – vector of physical parameters describing the planet around target k .

Model the catalog as a draw from the inhomogeneous Poisson process set
by the observable rate density Γ̂θ:

p({wk} |θ) = exp
(
−
∫

Γ̂θ(w) dw
) K∏

k=1

Γ̂θ(wk) (2)

Γ̂θ(w) = Qc(w) Γθ(w) (3)

where Qc(w) is the detection efficiency (including transit probability) at w .
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Occurrence rate density model

Γθ(w) =


exp(θ1) w ∈ ∆1,
exp(θ2) w ∈ ∆2,
· · ·
exp(θJ) w ∈ ∆J ,
0 otherwise

(4)

where the parameters θj are the log step heights and the bins ∆j are fixed
a priori
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Including uncertainties of planet parameters

p({xk} |θ) =

∫
p({xk} | {wk}) p({wk} |θ) d{wk} (5)

{xk} is the set of all light curves, one light curve xk per target k (70,000
epochs per target typically)
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Definition of hierarchical inference

The values {wk
(n)} are samples drawn from the posterior probability

wk
(n) ∼ p(wk | xk , α) (6)

For target k there are Nk samples. The notation α is a reminder that the
catalog was produced under a specific choice of a – probably
“uninformative” – interim prior p(wk |α).

Marginalized likelihood:

p({xk} |θ)

p({xk} |α)
≈ exp

(
−
∫

Γ̂θ(w) dw
) K∏

k=1

1
Nk

Nk∑
n=1

Γ̂θ(w (n)
k )

p(w (n)
k |α)

(7)

The data only enter this equation through the posterior constraints
provided by the catalog {wk}.
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Simulations for tests

Period and radius distributions are generated by a separable model

Γθ(lnP, lnR) = Γ
(P)
θ (lnP) Γ

(R)
θ (lnR) (8)

but fit using the full general model.

The first – Catalog A – is generated assuming a smooth occurrence surface
where both distributions are broken power laws.

The second – Catalog B – is designed to be exactly the distribution inferred
by Petigura et al. (2013) in the range that they considered and then
smoothly extrapolated outside that range.
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Catalog A – rate density
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Accuracy vs. precision
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Catalog B – rate density
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Extrapolated rate density
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Real data – rate density
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Real data – extrapolated rate density of Earth analogs
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Results

Γ⊕ = 0.019+0.019
−0.010 nat−2 – Foreman-Mackey et al. (2014)

Γ⊕ = 0.119+0.046
−0.035 nat−2 – Petigura et al. (2013)

−5 −4 −3 −2
ln Γ⊕

Petigura et al. (2013)

Dong & Zhu (2013)

linear extrapolation

uncertainties ignored

Foreman-Mackey et al. (2014)
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Final note
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