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Assumptions of Foreman-Mackey et al. 2014

o Conditional independence — We assume that every object in the
catalog is a conditionally independent draw from the observable
occurrence rate density.
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Planet parameters and detection efficiency from Petigura et al.

(2013)
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d2N
l'e = 55 (1)
dinPdInRig_g. p_p,
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@ Constrain the rate density of small exoplanets orbiting Sun-like stars.

@ Place probabilistic constraints on the rate density of Earth analogs Is,
defined as the expected number of planets per star per natural
logarithmic bin in period and radius, evaluated at the period and
radius of Earth.

L L (1)
© 7 dnPdInR|g_g, pp,

Rate — indicate the dimensionless expectation value of a Poisson process.
Rate density — a quantity that must be integrated over a finite bin in
period and radius to deliver a rate.

Radek Poleski 4/17



Traditional approach

le(w) — occurrence rate density ' (parameterized by the parameters 0) as
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Traditional approach
le(w) — occurrence rate density ' (parameterized by the parameters 0) as

a function of the physical parameters w (orbital period, planetary radius,
etc.)

w — vector of physical parameters describing the planet around target k.

Model the catalog as a draw from the inhomogeneous Poisson process set
by the observable rate density [g:

p({w}|0) = exp <—/f0(w)dw) lﬁfe(wk) (2)
“1

Fo(w) = Qc(w)lgo(w) (3)
where Q.(w) is the detection efficiency (including transit probability) at w.
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Occurrence rate density model

exp(61) w e Ay,
exp(f2) w e Ay,
To(w) = { - (4)
exp(y) we Ay,
0 otherwise

where the parameters §; are the log step heights and the bins A; are fixed
a priori
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Including uncertainties of planet parameters

p({xk}|0) = /P({Xk}|{Wk})P({Wk}|0)d{Wk} (5)

{xk} is the set of all light curves, one light curve x per target k (70,000
epochs per target typically)
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Definition of hierarchical inference

The values {w ("} are samples drawn from the posterior probability
wil” ~ p(wi|xx, @) (6)

For target k there are N, samples. The notation a is a reminder that the

catalog was produced under a specific choice of a — probably
“uninformative” — interim prior p(wy | o).
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Definition of hierarchical inference
The values {w ("} are samples drawn from the posterior probability

Wk(") ~ P(Wk\xk, a) (6)

For target k there are N, samples. The notation a is a reminder that the
catalog was produced under a specific choice of a — probably
“uninformative” — interim prior p(wy | o).

Marginalized likelihood:

p({x}16) w(”)

el = e (- [fomae) [ 3 50

nlp

The data only enter this equation through the posterior constraints
provided by the catalog {w/}.
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Simulations for tests

Period and radius distributions are generated by a separable model
Fe(nP, InR) = TnP)rY(InR) (8)

but fit using the full general model.
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Simulations for tests

Period and radius distributions are generated by a separable model

Fe(nP, InR) = TnP)rY(InR) (8)
but fit using the full general model.
The first — Catalog A — is generated assuming a smooth occurrence surface
where both distributions are broken power laws.

The second — Catalog B — is designed to be exactly the distribution inferred
by Petigura et al. (2013) in the range that they considered and then
smoothly extrapolated outside that range.
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Catalog A — rate density
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Accuracy vs. precision

Accuracy and Precision
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Catalog B — rate density
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Extrapolated rate density
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Real data — rate density
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Real data — extrapolated rate density of Earth analogs
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Results

Mo = 0.0197991% nat=2 — Foreman-Mackey et al. (2014)
Mo = 0.119735%% nat =2 — Petigura et al. (2013)

Petigura et al. (2013)} —
Dong & Zhu (2013)} —
linear extrapolation —
uncertainties ignored —_—
Foreman-Mackey et al. (2014)} ———e———
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Final note

...... J  SNMAU DL \ArAvAResias A SLA AT MU Suas U x ety Sa s marwas s

statistics computed on posterior samplings. For the sake of
hierarchical inferences like the method presented here, it would
be very useful if the authors of upcoming catalogs also published
samples from these distributions along with the value of their
prior function evaluated at each sample. In this spirit, we have
released the results of this paper as posterior samplings'® for the
occurrence rate density function.

All of the code used in this project is available from
http://github.com/dfm/exopop under the MIT open-source soft-
ware license. This code (plus some dependencies) can be run
to re-generate all of the figures and results in this article; this
version of the paper was generated with git commit d563244d
(2014 August 28).

We would like to thank Erik Petigura (Berkeley) for freely
sharing his data and code. It is a pleasure to thank Ruth
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