A Principal Component Analysis of the Diffuse Interstellar Bands

T. Ensor, J. Cami, N. H. Bhatt, and A. Soddu, 2017, ApJ, 836, 162

05.12.2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

OUTLINE

- Diffuse Interstellar Bands (DIB)
- Principal Component Analysis (PCA)
- Observational Data
- PCA results
- Interpretation of Principal Components (PC)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conclusions

Diffuse Interstellar Bands (DIB-s)

- DIB-s absorption lines that arise from material in interstellar clouds
- There are known for more than 100 years Mary L. Heger letter (1922)
- There are known about 500 bands
- The carriers of most DIB-s remain unidentified.
- Very difficult identification it is usually assumed that responsible are big molecules containing carbon.
- The only known absorber related to DIB-s is buckminsterfullarene (C⁺₆₀) responsible for several DIB-s in the infrared (Campbell et al. 2015).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Diffuse Interstellar Bands (DIB-s) - correlation studies

- If two DIB-s arise from the same state in the same carrier, they should have the same strength ratio in all lines of sight and thus, their equivalent widths (EWs) should exhibit a perfect correlation.
- Mutual DIB-s correlations
- No perfect correlation different carriers, but "one DIB one carier" is rather exaggeration (C⁺₆₀ is responsible for 4 DIB-s at least)
- DIB-s families strong correlations between EW (for λ 6196 and λ 6614 r = 0.986)
- Corelatons between DIB-s and line-of-sight properties (E(B-V), N(H), N(HI)).
- Dependence on environmental conditions (example W(λ 5797)/ W(λ 5780) ratios are smaller in clouds with stronger UV exposure - effects on dust properties σ clouds and ζ clouds)

Diffuse Interstellar Bands (DIB-s) - correlation studies

The main aim of a paper: determine parameters that drive the variations in DIB spectrum.

Perform a principal component analysis (PCA) on the data to find out how many parameters are required to describe the observed variations among the DIB-s.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Interpret new parameters.
- Use DIB-s to determine physical parameters of their environment

Principal Components Analysis (PCA)

- Krystian Iłkiewicz introduction to PCA given at SJC 05.05.2022.
- PCA statistical technique for reducing dimensionality of a dataset.
- We chose new parameters by linear combination of input data parameters

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

New parameters form ortogonal set of vectors whereas old parameters are often strongly correlated. Principal Components Analysis (PCA) - main steps

- n variables for m lines of sight.
- Rescaling of a data (subtract mean, divide by standard deviation)

$$z_{i,j} = \frac{x_{i,j} - \bar{x}_i}{s_{x_i}}$$

Calculate covariation matrix (n × n matrix)

$$C_{k,l}=\frac{1}{m-1}z_{k,i}z_{i,l}$$

- Find eigenvalues and eigenvctors of covariation matrix
- Sort eigenvalues from the largest
- Corresponding eigenvecteors give principal components
- Multiply transposed eigenvector matrix by rescaled data matrix to obtain a data in principal components base

$$y_i \hat{n}' = a_{i,1} x_1 \hat{n}_1 + a_{i,2} x_2 \hat{n}_2 + .. + a_{i,n} x_n \hat{n}_n$$

 \hat{n}_n - unit vectors in the original parameter space \hat{n}'_n - unit vectors in the new reference frame - principal components

$$a_{i,1}^2 + a_{i,2}^2 + \ldots + a_{i,n}^2 = 1$$

$$Y = AX$$

X - $n \times m$ matrix containing original set of data

A - $n \times n$ - transformation matrix

Y - $n \times m$ matrix containing transformed data points in the new reference frame.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Observational data - target selection

- Search for high quality, high resolution spectra in VLT/UVES and ELODIE archives for 243 stars from the study of Jenkins (2009) where are present fairly strong and narrow DIB-s possibly free of contaminantion from stellar lines (16 DIB-s)
- Selection of single cloud lines of sight based on examination of Na I (589.0 nm and 589.5 nm) and K I (766.5 and 769.9 nm) lines.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Final set of 30 stars with observations characterized by 23 parameters

Target stars.

Target	Alt. Name	R.A. (12000)	Decl. (12000)	V	E(B - V)	N(H I) (10 ²¹ cm ⁻²)	$(10^{20} \text{ cm}^{-2})$	$f(\mathbf{H}_2)$	F,	W(35797) W(35780)	$(km s^{-1})$	References*	Data Source
HD 15127		02 27 50 81	152 22 57 6	7.96	0.24	1 20+0.57	1.96+0.26	0.22+0.09	0.27 ± 0.00	0.30 ± 0.02	0.59		FLODIE
HD 22951	40 Per	03 42 22 65	+33 57 54 1	4.08	0.19	1.10+0.35	2 88+1.48	0.35+0.27	0.37 ± 0.05 0.73 ± 0.05	0.35 ± 0.02	12.47	i	FLODIE
HD 22180	o Par	03 44 19 13	+32 17 17 7	3.96	0.22	0.76+0.26	2.09-0.98	0.51+0.33	0.84 ± 0.06	0.65 ± 0.04	12.47		FLODIE
HD 23630	n Tau	03 47 29 08	+24.06.18.5	2.87	0.05	0.22+0.10	0.35+0.15	0.28+0.23	0.89 ± 0.00	0.00 ± 0.04 0.16 ± 0.04	16.76	2	FLODIE
HD 24398	(Per	03 54 07 92	+31.53.01.1	2.88	0.27	0.63+0.06	4 68+2.40	0.59+0.46	0.88 ± 0.05	0.55 ± 0.02	14 54	-	FLODIE
HD 24534	X Per	03 55 23 08	+31.02.45.0	610	0.31	0.54+0.08	8 32+0.80	0.76+0.13	0.90 ± 0.05	0.62 ± 0.04	14.5	ŝ	FLODIE
HD 24760	« Per	03 57 51 23	+40.00.36.8	2.90	0.07	0.25+0.05	0.33+0.27	0.21+0.25	0.68 ± 0.04	0.18 ± 0.02	7.06	2	FLODIE
HD 24912	6 Per	03 58 57.90	+35 47 27 7	4.04	0.26	1.29+0.26	3.30+1.40	0.35+0.21	0.83 ± 0.02	0.26 ± 0.01	11.2	ĩ	FLODIE
HD 27778	62 Tan	04 23 59.76	+24.18.03.6	6.33	0.34	0.22+9.55	5 25+1.05	0.82+0.45	1.19 ± 0.07	0.43 ± 0.03	15.22	2	FLODIE
HD 35149	23 Ori	05 22 50.00	+03 32 40.0	5.00	0.08	0.43+0.12	0.03+0.00	$0.02^{+0.00}$	0.54 ± 0.11	0.20 ± 0.04	24.09	2	UVES
HD 35715	Ψ Ori	05 26 50.23	$+03\ 05\ 44.4$	4.60	0.03	0.31+0.13	$6 \pm 2 \times 10^{-6}$	$4 \pm 2 \times 10^{-6}$	0.66 ± 0.11	0.10 ± 0.04	25.2	1	ELODIE
HD 36822	ϕ^1 Ori	05 34 49.24	+092922.5	4.40	0.07	$0.65^{+0.13}_{-0.13}$	$0.21^{+0.09}_{-0.09}$	$0.06^{+0.04}$	0.74 ± 0.08	0.19 ± 0.04	25.53	1	ELODIE
HD 36861	λ Ori A	05 35 08.28	+09.56.03.0	3.30	0.10	$0.60^{+0.16}_{-0.16}$	$0.13^{+0.08}_{-0.05}$	$0.04^{+0.04}_{-0.02}$	0.57 ± 0.04	0.48 ± 0.04	25.2	3	ELODIE
HD 40111	139 Tau	05 57 59.66	+25 57 14.1	4.82	0.10	0.79+0.16	$0.54^{+0.31}_{-0.20}$	$0.12^{+0.10}_{-0.07}$	0.49 ± 0.04	0.20 ± 0.04	15.29	2	ELODIE
HD 110432	BZ Cru	12 42 50.27	-63 03 31.0	5.32	0.39	$0.71^{+0.29}_{-0.21}$	$4.37_{-0.38}^{+0.42}$	$0.55^{+0.13}_{-0.11}$	1.17 ± 0.11	0.25 ± 0.01	6.8	3	UVES
HD 143275	δ Sco	16 00 20.01	-22 37 18.1	2.29	0.00	$1.41^{+0.29}_{-0.29}$	$0.26^{+0.15}_{-0.09}$	$0.03^{+0.03}_{-0.03}$	0.90 ± 0.03	0.19 ± 0.02	-10.90	2	UVES
HD 144217	β^1 Sco	16 05 26.23	$-19\ 48\ 19.6$	2.62	0.18	$1.23^{+0.12}_{-0.11}$	$0.68^{+0.10}_{-0.09}$	$0.10^{+0.02}_{-0.02}$	0.81 ± 0.02	0.11 ± 0.01	-8.95	2	UVES
HD 145502	ν Sco	16 11 59.74	-19 27 38.5	4.13	0.20	1.17 ± 0.56 1.07 ± 0.59	$0.78^{+0.32}_{-0.23}$	$0.12^{+0.08}_{-0.07}$	0.80 ± 0.11	0.18 ± 0.01	-8.49	2	ELODIE
HD 147165	σ Sco	16 21 11.32	-25 35 34.0	2.91	0.31	$2.19^{+0.90}_{-0.87}$	$0.62^{+0.25}_{-0.18}$	$0.05^{+0.04}_{-0.03}$	0.76 ± 0.06	0.13 ± 0.01	-6.26	2	UVES
HD 147933	ρ Oph A	16 25 35.10	-23 26 48.7	5.02	0.37	$4.27^{+0.98}_{-0.80}$	$3.72^{+1.53}_{-1.09}$	$0.15^{+0.09}_{-0.07}$	1.09 ± 0.08	0.27 ± 0.03	-8.02	2	UVES
HD 149757	ζ Oph	16 37 09.54	-10 34 01.5	2.58	0.29	$0.52^{+0.02}_{-0.04}$	$4.47^{+0.90}_{-0.75}$	$0.63^{+0.20}_{-0.17}$	1.05 ± 0.02	0.50 ± 0.04	-14.98	2	UVES
HD 164284	66 Oph	18 00 15.80	+04 22 07.0	4.78	0.11	$0.42^{+0.23}_{-0.39}$	$0.71^{+0.29}_{-0.21}$	$0.25^{+0.18}_{-0.20}$	0.89 ± 0.18	0.15 ± 0.02	-15.32	1	ELODIE
HD 170740		18 31 25.69	$-10\ 47\ 45.0$	5.76	0.38	$1.07^{+0.59}_{-0.47}$	$7.24^{+1.47}_{-1.22}$	$0.58^{+0.22}_{-0.18}$	1.02 ± 0.11	0.26 ± 0.01	-12.9	6	UVES
HD 198478	55 Cyg	20 48 56.29	$+46\ 06\ 50.9$	4.86	0.43	$2.04^{+0.84}_{-0.63}$	$7.41^{+3.06}_{-2.17}$	$0.42^{+0.27}_{-0.20}$	0.81 ± 0.05	0.24 ± 0.01	-10.04	2	ELODIE
HD 202904	v Cyg	21 17 55.08	+345348.8	4.43	0.09	$0.23^{+0.21}_{-0.23}$	$0.14^{+0.07}_{-0.05}$	$0.11^{+0.12}_{-0.10}$	0.39 ± 0.11	0.13 ± 0.05	-12.90	4	ELODIE
HD 207198		21 44 53.28	+62 27 38.0	5.96	0.47	$3.39^{+0.59}_{-0.50}$	6.76 ^{+0.65} -0.59	$0.28^{+0.05}_{-0.05}$	0.90 ± 0.03	0.53 ± 0.01	-15.28	2	ELODIE
HD 209975	19 Cep	22 05 08.79	+62 16 47.3	5.11	0.27	$1.29^{+0.41}_{-0.38}$	$1.20^{+0.62}_{-0.41}$	$0.16^{+0.12}_{-0.09}$	0.57 ± 0.26	0.31 ± 0.01	-11.39	2	ELODIE
HD 214680	10 Lac	22 39 15.68	+39 03 01.0	4.88	0.08	$0.50^{+0.14}_{-0.15}$	$0.17^{+0.05}_{-0.04}$	$0.06^{+0.03}_{-0.03}$	0.50 ± 0.06	0.34 ± 0.02	-9.2	1	ELODIE
HD 214993	12 Lac	22 41 28.65	+40 13 31.6	5.23	0.06	$0.58^{+0.20}_{-0.18}$	$0.43^{+0.22}_{-0.14}$	$0.13^{+0.00}_{-0.07}$	0.68 ± 0.10	0.17 ± 0.02	-9.44	1	ELODIE
HD 218376	1 Cas	23 06 36.82	$+59\ 25\ 11.1$	4.84	0.16	$0.89^{+0.28}_{-0.26}$	$1.41^{+0.73}_{-0.48}$	$0.24^{+0.19}_{-0.13}$	0.60 ± 0.06	0.28 ± 0.01	-12.65	1	ELODIE

Table 1 Basic Target Data

Note, R.A. and decl. are taken from SMBAD. V, E(B - V), N(H I), $N(H_2)$, and F₄ values are from Jenkins (2009), where we assume an uncertainty of ± 0.02 mag on the E(B - V) values. $f(H_2) = 2N(H_2)/(N(H_1) + 2N(H_2))$ is the fraction of molecular hydrogen.

^a Value and reference refer to the velocity of the dominant interstellar component.

Observational parameters.

input variables Us	Standard Deviations	ii values and		
Variable Name	Mean	Standard Deviation		
(x_i)	(\bar{x}_i)	(s_{x_i})		
$x_1 = W(\lambda 4428)$	645.9	350.9		
$x_2 = W(\lambda 4964)$	6.8	5.7		
$x_3 = W(\lambda 5494)$	5.6	4.1		
$x_4 = W(\lambda 5513)$	3.9	3.9		
$x_5 = W(\lambda 5545)$	5.9	4.3		
$x_6 = W(\lambda 5546)$	2.8	2.2		
$x_7 = W(\lambda 5769)$	2.6	2.2		
$x_8 = W(\lambda 5780)$	131.5	77.0		
$x_9 = W(\lambda 5797)$	37.7	27.8		
$x_{10} = W(\lambda 5850)$	15.6	13.6		
$x_{11} = W(\lambda 6196)$	13.5	8.3		
$x_{12} = W(\lambda 6270)$	20.7	13.9		
$x_{13} = W(\lambda 6284)$	149.4	84.1		
$x_{14} = W(\lambda 6376)$	9.3	7.4		
$x_{15} = W(\lambda 6379)$	24.7	18.0		
$x_{16} = W(\lambda 6614)$	52.5	35.2		
$x_{17} = E(B - V)$	0.20	0.13		
$x_{18} = N(H I)$	1.0×10^{21}	9.2×10^{20}		
$x_{19} = N(H_2)$	2.4×10^{21}	2.6×10^{20}		
$x_{20} = N(H)$	1.5×10^{21}	1.2×10^{21}		
$x_{21} = f(H_2)$	0.27	0.23		
$x_{22} = F_{\star}$	0.75	0.21		
$x_{23} = \frac{W(\lambda 5797)}{W(\lambda 5780)}$	0.2907	0.1567		

 Table 2

 Input Variables Used in the PCA, and Their Mean Values and Standard Deviations

PCA for two parameters: E(B-V), N(H)

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● ● ● ●

PCA for two parameters: E(B-V), N(H)

Table 3

Principal Components, Eigenvalues, and Relative Importance of Each PC for a 2D Example Involving E(B - V) and N(H)

PC	Eigen- value	% Variation	Cumulative %	Eigenvector
1	1.813	90.63	90.63	(0.707, 0.707)
2	0.187	9.37	100.00	(0.707, -0.707)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

PCA for two parameters: E(B-V), N(H)

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● ● ● ●

PCA for all components

Table 4

Principal Components, Eigenvalues, and Relative Importance of Each PC

PC	Eigenvalue	% Variation	Cumulative %		
1	15.248	66.30	66.30		
2	3.158	13.73	80.03		
3	1.801	7.83	87.86		
4	1.139	4.95	92.81		
5	0.355	1.54	94.35		
6	0.262	1.14	95.49		
7	0.192	0.84	96.33		
8	0.186	0.81	97.14		
9	0.157	0.68	97.82		
10	0.117	0.51	98.33		
11	0.096	0.42	98.75		
12	0.074	0.32	99.07		
13	0.066	0.29	99.35		
14	0.055	0.24	99.60		
15	0.032	0.14	99.74		
16	0.025	0.11	99.85		
17	0.012	0.05	99.90		
18	0.008	0.03	99.93		
19	0.006	0.03	99.96		

Screeplot for principal components

Figure 6. Screeplot illustrating the relative importance of each PC. The dashed line indicates an eigenvalue of one. The first four PCs lie above this limit.

(日)

э

Biplot for principal components PC1 and PC2

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ の < @

Biplots for principal components PC1 and PC2 for partial analysis z_{17} - z_{23} and z_1 - z_{16}

Figure 7. PC₁-PC₂ biplots for (top) all variables, (bottom left) line-of-sight parameters only (excluding DIBs), and (bottom right) DIBs only, excluding line-of-sight parameters. The 23-dimensional vectors corresponding to the original variables are projected onto the PC₁-PC₂ plane. The rectangular outlines surrounding the vectors indicate the uncertainty range for each projection, obtained through an MC simulation. Note that the vectors have been scaled by a constant factor for better visualization (as was done in Figure 4). Be stars are indicated by yellow squares. To help with clarity, a zoomed-in and rescaled portion of the full PCA results is presented next to the main figure. The same color scheme is used for all figures.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Interpretation of PC1

- Largest projections on PC1 is related to equivalent widths of DIB-s
- PC1 traces amount of DIB-s producing material in gas phase (W(λ 5797) has correlation 0.96 with PC1).

 $N_{DIB} = 0.136(PC1) + 0.90$ $N_{DIB} \approx 0.0185W(\lambda 5797) + 0.19$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Correlation between $W(\lambda 5797)$ and PC1

Figure 8. W(λ 5797) and PC₁ have a very strong correlation (r = 0.957). The equation of the best-fit line is $W(\lambda$ 5797) = 7.31(PC₁) + 38.25. Be stars are

Interpretation of PC2

- Important negative contribution to PC2 comes from W(λ5797)/W(λ5780) projection.
- W(λ5797 has small projection on PC2 whereas W(λ5780 corelates strongly
- PC2 depend on radiation environment at place of DIB formation

$$G_{DIB} = PC2$$

 $G_{DIB} \approx -9.07[W(\lambda 5797)/W(\lambda 5780)] + 2.55$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

PC2 (G_{DIB}) as a function of $W(\lambda 5797)/W(\lambda 5780)$

Figure 9. G_{DIB} as a function of W(λ 5797)/W(λ 5780). Be stars are indicated by yellow squares; three possible outliers (HD 15137, HD 198478, and HD 209975; located at $G_{\text{DIB}} \approx 3$) are shown as blue triangles. We show the

Interpretation of PC2

There is a good corelation between PC2 and W(λ5797)/W(λ5780) for ζ clouds, but there is unclear situation for σ clouds.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Biplot for PC1-PC3

Biplot for PC2-PC3

Figure 10. (Top) PC1-PC3 biplot. (Bottom) PC2-PC3 biplot. Be stars are

Interpretation of PC3 is uncertain, but there are two good candidates

 Dust grains size, which should be inversely correlated to E(B-V) and f(H₂) fraction

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Gas to dust ratio measured as N(H)/E(B-V)

N(H)/E(B-V) as function of PC3

Figure 12. Total column of hydrogen per unit reddening as a function of PC₃. Yellow squares are used to indicate Be stars, which mostly fall below the trend line. The solid red line represents a straight line fit through all data points

Interpretation of PC3

$$\frac{N(H) \times 10^{-21}}{E(B-V)} = 7.31 \pm 0.27 + PC3 \times (1.89 \pm 0.26)$$

When we assume that mean interstellar value of N(H)/E(B-V) is $5.8 \times 10^{21} a toms/cm^2/mag$ and GTD = 1 for this value one can obtain

$$GTD = 0.318 \times PC3 + 1.29$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conclusions

- PCA analysis of DIB-s equivalent widths and line-on-sight properties for single cloud sightlines gives main parameters important for DIB-s formation and properties.
- PC1 amount of DIB producing material
- PC2 the level of UV radiation at place of DIB formation
- PC3 related to dust properties or gas to dust ratio
- It is possible using DIB-s to determine physical parameters of their environment - even without identifying the carriers.