Wykład 10 - Ewolucja na ciągu głównym. Ewolucja Słońca. Ewolucja gwiazd o pośrednich masach do zapalenia węgla

14.12.2017

Ciąg główny

Najdłuższa faza ewolucyjna dla gwiazd związana z zamianą wodoru w hel.

 Zmiany składu chemicznego w centrum gwiazdy początek: X=0.7, Y=0.28, Z=0.02 to dla zjonizowanego gazu

$$\mu \approx \frac{2}{3X + 0.5Y + 1} = 0.617$$

koniec: X=0, Y=0.98, Z=0.02

$$\mu \approx 1.34$$

► Zmniejszenie liczby cząstek → kontrakcja dla zachowania ciśnienia zwiększenie gęstości → zwiększenie temperatury → zwiększenie tempa przemian jądrowych.

Zmiany parametrów centralnych

 Przybliżamy strukturę gwiazdy jako politropową i równanie stanu gazu doskonałego.

$$P = \frac{k}{\mu m_H} \rho T$$

$$P = K \rho^{1+1/n}$$

Dla ciśnienia centralnego

$$P_{c} = \frac{1}{4\pi(n+1)\left[\left(\frac{d\theta}{d\xi}\right)_{1}\right]^{2}} \frac{GM^{2}}{R^{4}} = B_{n} \frac{GM^{2}}{R^{4}} = C_{n} GM^{2/3} \rho_{c}^{4/3}$$

Zależność pomiędzy gęstością a temperaturą centralną

$$\rho_c = \left(\frac{k}{\mu m_H C_n G}\right)^3 \frac{T_c^3}{M^2}$$

Zmiany parametrów centralnych - model uproszczony

Rysunek: Wyidealizowane zmiany gęstości i temperatury centralnej Krzysztof Belczyński - Wykład z Astrofizyki I

Zmiany składu chemicznego gwiazdy podobnej do Słońca

Rysunek: Zmiany składu chemicznego we wnętrzu gwiazd. Model o masie 1 M_{\odot} X=0.7, Z=0.02 w wieku 0.0, 2.2, 4.2, 6.2 8.2 i 10.4 i 11.2 Gy. (Kippenhahn, Weigert, Weiss "Stellar structure and evolution")

Zmiany tempa produkcji energii

Rysunek: Zmiany tempa produkcji energii we wnętrzu gwiazd. Model o masie 1 M_{\odot} X=0.7, Z=0.02 w wieku 0.0, 2.2, 4.2, 6.2 8.2 i 10.4 i 11.2 Gy. Niewidoczne maksimum ma wartość 170 erg/g/s. (Kippenhahn, Weigert, Weiss "Stellar structure and evolution")

Zmiany składu chemicznego gwiazdy podobnej do Słońca

Rysunek: Zmiany składu chemicznego we wnętrzu gwiazd. Model o masie 5 M_{\odot} X=0.7, Z=0.02 w wieku 0.7, 23, 55, 78 i 82 My. (Kippenhahn, Weigert, Weiss "Stellar structure and evolution")

Zmiany tempa produkcji energii

Rysunek: Zmiany tempa produkcji energii we wnętrzu gwiazd. Model o masie 5 M_{\odot} X=0.7, Z=0.02 w wieku 0.7, 55, 78 i 82 My. Niewidoczne maksimum ma wartość 2.6 \cdot 10⁴ erg/g/s (Kippenhahn, Weigert, Weiss "Stellar structure and evolution")

Zmiany paramertów powierzchniowych i centralnych

Rysunek: Tory ewolucyjne gwiazd populacji I na diagramie HR i w płaszczyżnie log $\rho_c - \log T_C$ (Wojciech Dziembowski "Astrofizyka teoretyczna I")

Zmiany parametrów powierzchniowych

- cykl PP zwiększenie rozmiarów i temperatury efektywnej
- cykl CNO zwiększenie rozmiarów i zmniejszenie temperatury efektywnej

Czas życia na ciągu głównym

Ewolucja przebiega w jądrowej skali czasu silnie zależnej od masy gwiazdy L ~ M^α, α ∈ (3; 4.5) w zakresie 0.5-20 M_☉

$$\tau_{nuc} = \frac{f \epsilon M c^2}{L}$$

f- część materii dostępna do reakcji ϵ - efektywność energetyczna reakcji ($\epsilon \approx 0.007$ dla reakcji termojądrowych zamiany wodoru w hel)

- Przybliżony czas życia Słońca na ciągu głównym to 10¹⁰ lat
- Przybliżony czas życia na ciągu głównym dla gwiazd o małych masach

M_{ini}/M_{\odot}	t _{MS} (yr)
0.1	$4 \cdot 10^{12}$
0.2	$9\cdot 10^{11}$
0.3	$4\cdot 10^{11}$
0.4	$2\cdot 10^{11}$
0.5	$1.3\cdot 10^{11}$
0.6	$7.5\cdot 10^{10}$

Czas życia na ciągu głównym

Rysunek: Zależność czasu życia gwiazdy w fazie ciągu głównego w zależności od masu i populacji - Popl: X=0.7, Z=0.02; PopII: X=0.756, Z=0.001 (Wojciech Dziembowski "Astrofizyka teoretyczna I")

Czas życia na ciągu głównym - duże masy

 Dla gwiazd o dużych masach istotna staje się utrata masy na ciągu głównym Czasy życia dla gwiazd o dużych masach (Z=0.02).

M_{ini}/M_{\odot}	<i>t_{MS}</i> (yr)	$-\Delta M/M_{\odot}$
30	$5.9 \cdot 10^{6}$	2.4
40	$4.9\cdot 10^6$	5.0
50	$4.3\cdot10^{6}$	8.6
60	$4.0\cdot 10^6$	13
80	$3.7 \cdot 10^{6}$	25
100	$3.5\cdot10^{6}$	40

Niepewności związane z konwekcją

Rysunek: Tory ewolucyjne gwiazd z M=1.0 i 1.5 M_{\odot} (X=0.7, Z=0.02) dla różnych parametrów drogi mieszania (Wojciech Dziembowski "Astrofizyka teoretyczna I")

Niepewności związane z konwekcją

Rysunek: Tory ewolucyjne gwiazd z M=5, 15 i 20 M_{\odot} (X=0.7, Z=0.02) liczone standartowo i z mieszaniem poza granicą konwektywnego jądra (Wojciech Dziembowski "Astrofizyka teoretyczna I")

Ewolucja Słońca - schemat budowy wewnętrznej

Rysunek: rysunek z O.R. Pols "Stellar structure and evolution"

Ewolucja Słońca - ewolucja na diagramie H-R

Rysunek: rysunek z O.R. Pols "Stellar structure and evolution"

Ewolucja Słońca - ewolucja na diagramie H-R

Rysunek: rysunek z Sackmann i inni 1993 ApJ, 418, 457)

Ewolucja Słońca - zmiany parametrów wewnętrznych

Rysunek: rysunek z Sackmann i inni 1993 ApJ, 418, 457)

Ewolucja Słońca - główne etapy ewolucji

Phase	Age/Gy	L/L_{\odot}	$T_{\rm eff}/{\rm K}$	R/R_{\odot}	$M_{\rm Sun}/M_{\odot}$
ZAMS	0.00	0.70	5596	0.89	1.000
present	4.58	1.00	5774	1.00	1.000
MS:hottest	7.13	1.26	5820	1.11	1.000
MS:final	10.00	1.84	5751	1.37	1.000
RGB:tip	12.17	2730.	2602	256.	0.668
ZA-He	12.17	53.7	4667	11.2	0.668
AGB:tip	12.30	2090.	3200	149.	0.546
AGB:tip-TP	12.30	4170.	3467	179.	0.544

(note: 1.00 AU = 215 R_{\odot})

Rysunek: Parametry Słońca na jego głównych etapach ewolucji (Schröder and Smith 2008)

Ewolucja Słońca - główne etapy ewolucji

- protogwiazda
- gwiazda ciągu głównego (stabilne reakcje termojądrowe zamiany wodoru w hel)
- wypalenie wodoru w centrum odejście od ciągu głównego
- palenie wodoru wokół izotermicznego helowego jądra –gałąź czerwonych olbrzymów
- u szczytu gałęzi czerwonych olbrzymów błysk helowy
- stabilne palenie helu w jądrze + palenie wodoru w warstwie wokół jądra
- wypalenie helu w jądrze, uformowanie dwóch warstw w których zachodzą reakcje termojądrowe: wewnętrzna zużywa hel, zewnętrzna wodór - gwiazda na asymptotycznej gałęzi czerwonych olbrzymów.
- pulsy termiczne w warstwie palenia wodoru i odrzucenie otoczki
- stadium mgławicy planetarnej (?) i jądro tworzy gorącego białego karła
- stygnięcie białego karła

Ewolucja do zapalenia helu

Rysunek: Tory ewolucyjne na diagramie H-R i log ρ_c - log T_c gwiazd populacji I od ZAMS do zapalenia helu (W. Dziembowski - Astrofizyka Teoretyczna I)

Błysk helowy

- ► W czasie ewolucji ku szczytowi gałęzi czerwonych olbrzymów helowe jądra gwiazd o masie poniżej 2.3 M_☉ są zdegenerowane.
- ▶ Przy temperaturze ok 10⁸ K rozpoczynają się reakcje spalania helu w cyklu 3 α . Dla $M = 1M_{\odot}$ masa jądra na początku błysku wynosi 0.47 M_{\odot} , a promień 0.026 R_{\odot} . Ze względu na chłodzenie neutrinowe największa temperatura jest dla $M_r \approx 0.15M_{\odot}$ (zależnie od masy)
- ► W gazie zdegenerowanym wzrostowi temperatury nie towarzyszy istotny wzrost ciśnienia, przez co tempo reakcji termojądrowych bardzo szybko narasta Wzrost mocy promieniowania z cyklu 3α z 10² do 10³ L_☉ trwa ok. 1000 lat, ale wzrost z 10⁸ do chwilowej jasności ok 10¹¹ trwa kilkanaście dni, jasność potem szybko spada bo wzrost temperatury powoduje zniesienie degeneracji i ekspansję jądra
- Zwiększenie rozmiaru jądra powoduje spadek temperatury w jądrze i zmniejszenie rozmiarów otoczki. Następuje stabilne palenie helu i palenie wodoru w cienkiej warstwie otaczającej

Błysk helowy - zmiany jasności

Rysunek: Błysk helowy dla gwiazdy o masie 0.85 M_{\odot} (Kippenhahn, Weigert, Weiss "Stellar structure and evolution")

Błysk helowy - struktura gwiazdy

Rysunek: Struktura gwiazdy o masie 1.3 M_{\odot} podczas błysku helowego (Kippenhahn, Weigert, Weiss "Stellar structure and evolution")

Stabilne palenie helu

- Tempo reakcji jądrowych w helowym jądrze zależy od masy jądra (Paczyński 1970)
- Po zapaleniu helu w jądrze ścieżki ewolucyjne gwiazd w zakresie masy 0.8-2 zbiegają się w obszarze nazywanym po angielsku "red clup"

Kiedy izotermiczne jądro helowe jest niezdegenerowane istnieje ograniczenie na jego masę, powyżej której zapada się ono pod ciężarem swoim i otoczki. Przyjmijmy, że jądro ma promień R_j , masę M_j , a na jego powierzchni mamy ciśnienie P_j . Z równania równowagi hydrostatycznej otrzymujemy ($V = 4/3\pi r^3$)

$$\int_{P_c}^{P_j} V dP = -\frac{1}{3} \int_0^{M_j} \frac{GM_r}{r} dM_r = -\frac{1}{3} \alpha \frac{GM_j^2}{R}$$

 $\alpha \frac{GM_{j}^{2}}{R_{i}}$ - energia wiązania grawitacyjnego izotermicznego jadra

$$\int_{P_c}^{P_j} V dP = PV|_c^j - \int_{V_c}^{V_j} P dV = P_j V_j - \int_{V_c}^{V_j} P dV$$

przyjmując, że jądro składa się z gazu doskonałego i jest izotermincze możemy zapisać

$$\int_{V_c}^{V_j} P dV = \frac{kT_c}{\mu_c m_H} \int_0^{V_j} \rho dV = \frac{kT_c}{\mu_c m_H} M_j$$

Dzieląc równanie przez V_j otrzymujemy ciśnienie na granicy jądra i otoczki

$$P_j(R_j) = \frac{3}{4\pi} \frac{kT_c}{\mu_c m_H} \frac{M_j}{R_j^3} - \frac{\alpha G}{4\pi} \frac{M_j^2}{R_j^4}$$

Obliczmy promień, jaki odpowiada ciśnieniu $P_j = 0$

$$R_0 = R_j(P_{j,min}) = \frac{\alpha G \mu_c m_H}{3k} \frac{M_j}{T_c}$$

Dla porównania policzmy promień dla którego mamy maksymalne ciśnienie P_j

$$\frac{dP_j}{dR_j} = \frac{-9}{4\pi} \frac{kT_c}{\mu_c m_H} \frac{M_j}{R_j^4} + \frac{4\alpha G}{4\pi} \frac{M_j^2}{R_j^5} = 0$$
$$R_1 = R_j(P_{j,max}) = \frac{4\alpha Gm_H}{9k} \frac{M_j \mu_c}{T_c}$$

Maksymalne ciśnienie $P_{j,max} = P_j(R_1)$

$$P_{j,max} = \frac{3}{4\pi} \frac{kT_c}{\mu_c m_H} \frac{M_j}{R_1^3} - \frac{\alpha G}{4\pi} \frac{M_j^2}{R_1^4}$$

$$P_{j,max} = \frac{3}{4\pi} \frac{kT_c M_j}{\mu_c m_H} \left(\frac{9kT_c}{4\alpha Gm_H M_j \mu_c}\right)^3 - \frac{\alpha GM_j^2}{4\pi} \left(\frac{9kT_c}{4\alpha Gm_H M_j \mu_c}\right)^4$$

$$P_{j,max} = \frac{3^7}{2^{10}} \frac{k^4}{\pi \alpha^3 G^3 m_H^4} \frac{T_c^4}{M_j^2 \mu_c^4}$$

Przy założeniu, że rozmiary gwiazdy są znacznie większe niż rozmiary jądra temperatura T_c może być przybliżona jako wynikająca z rozwiązania politropy przy założeniu równania stanu gazu doskonałego

$$T_c \approx \beta \frac{\mu_e m_H}{k} \frac{GM}{R}$$

Przez co

$$P_{j,max} = C_1 rac{M^4 \mu_e^4}{R^4 M_j^2 \mu_c^4}$$

Ograniczenie na ciśnienine wywierane przez otoczkę. Z równania równowagi hydrostatycznej wynika, że ciśnienie

$$\frac{M_j}{M} < \sqrt{\frac{8\pi C_1}{G}} \left(\frac{\mu_e}{\mu_c}\right)^2$$

Przy $\alpha=$ 0.5 warunek Schönberga - Chandrasekhara na stabilność jądra ma postać

$$\frac{M_j}{M} < 0.37 \left(\frac{\mu_e}{\mu_c}\right)^2$$

Dla typowych wartości $\mu_{c}=1.34$ i $\mu_{e}=0.617$ jądro zapadnie się gdy

$M_{j} > 0.08M$

Warunek Schönberga - Chandrasekhara odpowiada za istnienie przerwy Hertzsprunga na diagramie HR (ewolucja odbywa się w termicznej skali czasu).

Ewolucja do zapalenia węgla

Rysunek: Tory ewolucyjne gwiazd o różnych metalicznościach liczone do momentu zapalenia węgla, zaznaczony pas niestabilności pulsacyjnej cefeid (Wojciech Dziembowski "Astrofizyka teoretyczna I")

Czas trwania głównych etapów ewolucji

M/M_{\odot}	$\tau_{\rm MS}$	$ au_{ m HG}$	$\tau_{\rm HeB}$	red	blue
5	105.0	0.140	9.38	0.44	0.43
7	52.3	0.060	3.76	0.53	0.41
9	32.4	0.046	1.98	0.54	0.40
12	19.8	0.018	1.19	0.41	0.48

Rysunek: Liczony w milionach lat dla modeli gwiazd o Z=0.008 - wartość charakterystyczna dla gwiazd LMC. W ostatnich dwóch kolumnach podany jest względny czas spędzony po czeronej i niebieskiej stronie pasa niestabilności. (Wojciech Dziembowski "Astrofizyka teoretyczna I")

Zmiany centralnych parametrów

Rysunek: Tory ewolucyjne gwiazd populacji I na płaszczyżnie log $\rho_c - \log T_C$ (Bohdan Paczyński 1970 AcA 20, 47)

Zmiany ze względu na "overshooting"

Rysunek: Tory ewolucyjne gwiazdy I populacji o masie 9 M_{\odot} na diagramie HR dla modelu standardowego i z przechodzeniem elementów konwektywnych poza formalną granicę Schwarzschilda (Kippenhahn, Weigert, Weiss "Stellar structure and evolution")