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Termiczna skala czasu

Pierwsze etapy ewolucji: kurczenie się protogwiazd.
Termiczna skala czasu (Kelvina - Helmholtza).
Dla kul w równowadze hydrostatycznej E =W /2, czyli

τKH ≈
GM2

2RL
(1)

Dla Słońca GM2
2R = 1.9 · 1048erg , L = 3.86 · 1033 erg/s,

τKH ≈ 4.9 · 1014s ≈ 1.56 · 107 lat
W miarę wzrostu temperatury w centrum coraz więcej energii jest
produkowane przez reakcje termojądrowe aż tempo produkcji
energii w gwieździe osiągnie poziom strat na jej powierzchni.



I Reakcje termojądrowe postulowane jako źródło energii gwiazd
przez Eddingtona (1920), ale temperatura wnętrza Słońca
zbyt niska aby przezwyciężyć barierę Coulomba.

I Odkrycie efektu tunelowego przez G. Gamowa (1928) praca
Atkinsona i Houtermansa (1929) dotycząca reakcji
termojądrowych w gwiazdach

I Cykl p-p opisany niezależnie przez Weizsackera (1937)
(reakcja p-p) i Bethego i Critchfielda (1938) (całość cyklu)

I Cykl CN(O) opisany niezależnie przez Weizsackera (1938)
Bethego (1939)

I Reakcje jądrowe w gwiazdach - główne źródło powstania
pierwiastków cięższych niż hel. W wyniku pierwotnej
nukleosyntezy powstał wodór, hel i śladowe ilości pierwiastków
takich jak lit, beryl.



Zawartość pierwiastków

Rysunek:



Pochodzenie pierwiastków

Rysunek:



Tempa reakcji termojądowych

dLr
dMr

= ε(ρ,T ,X) - równanie na zmianę jasności w zależności od
zmiennej masowej.
ε(ρ,T ,X) - moc wydzielana na jednostkę masy
rj ,k - liczba reakcji jąder j i jąder k w 1 cm3 na 1 s
λj .k - liczba reakcji na jedną cząstkę

rj ,k = λj ,kNjNk

rj ,k = σj ,kvNjNk

Nj =
ρXj

Ajm



Nadwyżka masy

∆mj = (mj − Ajm)c2 = 931.5(mj/m − AJ)MeV (2)

pierwiastek A ∆m [Mev]
n 1 8.071
H 1 7.289
H 2 13.136
H 3 14.950
He 4 2.425
Be 8 4.944
C 12 0
O 16 -4.737

Jednostka masy atomowej - 1/12 masy atomu 12C (931.494
MeV /c2)



Cykle przemian jądrowych

Przemiany jądrowe zachodzą często w cyklach składających się z
ciągu syntez i następujących po nich rozpadów promieniotwórczych
powstałego niestabilnego izotopu.
Zwykle o szybkości cyklu reakcji decyduje jedna, najwolniejsza
reakcja syntezy, np izotopów a i b. Wtedy

ε =
λa,b

ρ
NaNbQeff =

λa,bXaXb

AaAbm2
Qeff , (3)

gdzie Qeff oznacza energię wydzieloną w pojedyńczym cyklu
pomniejszoną o energię unoszoną przez neutrina Qν

Qeff =
∑

j ,pocz

∆mj −
∑
k,kon

∆mk − Qν (4)



Zawartości pierwiastków

Zmiana obfitości pierwiastka j dana jest wzorem

dNj

dt
= −

(
λ̃j +

∑
k

λj ,kNk

)
Nj +

∑
k

∑
i

λi ,kNkNi (5)

λ̃j - stała rozpadu dla jąder niestabilnych
Jeżeli zmiany zachodzą w tempie znacznie szybszym niż cały cykl,
to Nj można wyliczyć jako obfitość równowagową przyjmując
dNj
dt = 0



Bariera potencjału
Reakcja syntezy jąder wymaga zbliżenia ich na odległość dN

odpowiadającą zasięgowi sił jądrowych, która jest porównywalna z
rozmiarem jądra.
Odległości jądrowe mierzy się w femtometrach (fermich)

1fm = 10−15m = 10−13cm

Przybliżona ocena zasięgu sił jądrowych

dN ≈ 1.4(A1/3j + A1/3k )fm

Bariera potencjału sił elektrostatycznego odpychania wynosi

EC =
e2ZjZk

dn
= 1.44

ZjZk

(dN/fm)
MeV (6)

Dla reakcji p + p mamy EC ≈ 0.5MeV .
Średnia energia cząsteczek gazu dana jest przez

Ē = kT = 8.6 · 10−4(T/107K )MeV



Bariera potencjału
W centrum Słońca

EC

Ē
= 370

Jaki ułamek wszystkich cząstek stanowią cząstki o energiach
E ≥ EC ? Korzystając z rozkładu Maxwella

dn(p) =
n

(2πmjkT )3/2
exp

(
− p2

2mjkT

)
4πp2dp (7)

NC

N
=

2√
π

∫ ∞
xC

exp (−x)
√

(x)dx , (8)

gdzie x = E/Ē .
Całkujemy przez części i korzystamy z xC >> 1, przez co
uwzględniamy tylko człon brzegowy i otrzymujemy

NC

N
≈ 2√

π
exp (−xC )

√
(xC ) = 4 · 10−160

Liczba protonów tworzących Słońce jest mniejsza niż 1057. Bez
efektu tunelowego reakcje temojądrowe nie mogłyby zachodzić.



Czynnik ekranowania

Elektrony otaczające jądra redukują barierę potencjału, co
prowadzi do efektywnego zwiększenia prawdopodobieństwa reakcji
o czynnik ekranowania SF . Efekt znaczący w gęstej plaźmie
(możliwość “zimnej fuzji”).
W warunkach astrofizycznych zazwyczaj wystarcza przybliżenie
słabego ekranowania. Opisujemy potencjał elektrostatycznyc
ekranowanego jądra korzystając ze wzoru:

Φ(r) =
Ze
r

exp (− r
rD

), (9)

gdzie

rD =
√

mkT
4πe2ρζ gdzie ζ =

∑
j

ZJ(Zj+1)
Aj
Xj

nosi nazwę promienia Debaye’a.



Czynnik ekranowania c.d.

W tym przybliżeniu czynnik ekranowania wynosi

Sf = exp (−dN

rD
) ≈ 1− dN

rD
(10)

Liczbowo

rD = 3 · 10−9
√
T7
ζρ2
cm

Ekranowanie w przypadku Słońca ma niewielkie znacznie.
Jego rola jest tym większa im mniejsza jest masa gwiazdy



Przekrój czynny na reakcje jądrowe
Przekrój czynny na zachodzenie reakcji jądrowych można zapisać
jeżeli v - będzie prędkością względną jądra j względem jądra k a
ψ(v) rozkładem prędkości względnych

rj ,k = NjNk

∫ ∞
0

σj ,kψ(v)vdv = NjNk < σj ,kv >= λj ,kNJNK

(11)
Jeżeli prędkości jąder j i k opisane będą rozkładem
Maxwella-Boltzmanna, to rozkład prędkości względnych będzie
również takim rozkładem, ale dla cząstek o masie zredukowanej

mred =
mjmk

mj +mk

Możemy wtedy zapisać

ψ(v)vdv =

(
2
kT

)3/2( 1
πmred

)1/2
E exp

(
− E
kT

)
dE (12)



Przekrój czynny na reakcje jądrowe - czas zycia jądra

Dla identycznych jąder, NjNk należy zastąpić w równaniu (11)
przez 12N

2
j

Czas życia jądra k ze względu na reakcję z cząstką j dany jest przez

τj ,k =
Nj

rj ,k

Jeżeli potrzeba wziąć pod uwagę wiele reakcji, to czas życia jądra k
dany jest wzorem

τk =

∑
j

1
τj ,k

−1



Przekrój czynny na reakcje jądrowe - efekt tunelowania

Przekrój czynny zawiera efekt tunelowania, który w przybliżeniu
JWKB, stosowanym, gdy E << EC i przy zaniedbaniu ekranowania
dany jest przez

PC = exp
(
− b√
E

)
(13)

gdzie

b = 2π2(2mred )1/2
ZjZke2

h
= 0.98ZjZk

√
mred

m
MeV 1/2 (14)



Przekrój czynny na reakcje jądrowe c.d.

Doświadczalne przekroje czynne dla reakcji jądrowych najczęściej
wyznaczane są dla energii dużo wyższych niż we wnętrzach gwiazd.
Czy ekstrapolacja danych doświadczalnych jest dobra, w dużej
mierze zależy od tego, czy w wyniku fuzji istnieją w
nowopowstałym jądrze rezonanse. Jeżeli energie są odległe od
rezonansowych, to możemy przyjąć, że

σ(E ) =
S(E )

E
PC (15)

gdzie S jest wolno zmienną funkcją energii.
Dla wszystkich ważnych w astrofizyce reakcji jadrowych wartości
S0 = S(E0) i pochodnych w rozwinięciu na szereg Taylora wokół
wybranego E = E0 są stablicowane. W uproszczonych formułach
można dalsze wyrazy tego szeregu pominąć.



Przekrój czynny na reakcje jądrowe c.d.

Wzór na tempo reakcji termojądrowych możemy zapisać w postaci

λj ,k =< σj ,kv >=

(
2
kT

)3/2( 1
πmred

)1/2
S0

∫ ∞
0

expF (E )dE

(16)
gdzie

F = −
(
E
kT

+
b√
E

)
Funkcja F (E ) osiąga maksimum dla energii

E = EG = (0.5kTb)2/3 (17)

nazywanej szczytem Gamowa.



Całkę wylicza się kładąc w przybliżeniu

F = FG +
1
2
F ′′G (E − EG )2

z

FG = −3
EG

kT

F ′′G ≡
(
d2F
dE 2

)
E=EG

= −3
4
bE−5/2G = −3

2

(
b
2

)−2/3
(kT )−5/3

co jest uzasadnione przez szybkie malenie funkcji podcałkowej przy
oddalaniu się od jej maksimum w EG W tym przybliżeniu całkę
wyliczamy w granicach (E − EG ) od −∞ do ∞∫∞

0 e
FdE ≈

√
2π
−F ′′

G
eFG =√

4π
3 (0.5b)1/3(kT )5/6 exp

[
−3
(

b
2

)2/3
(kT )−1/3

] (18)



Ostatecznie mamy

λj ,k ∼ T−2/3 exp

(
− f
T 1/37

)
, (19)

gdzie

f = 1.5b2/3
(
k
2

107K
)−1/3

= 19.72(ZjZk )2/3
(
m
mred

)1/3
Ta forma zależności szybkości reakcji od temperatury jest
charakterystyczna dla reakcji nierezonansowych. Jeżeli reakcja j+k
jest reakcją (wolną), która determinuje szybkość cyklu, to
wykładnik temperaturowy dla produkcji energii jest dany przez

εT =
∂ ln ε

∂ lnT
≈ f

3T 1/37
− 2

3
(20)

Im wyższy ładunek elektryczny jęder tym wyższy wykładnik i tym
większa koncentracja produkcji energii w pobliżu centrum gwiazdy



Reakcje rezonansowe

W okolicy rezonansu wyrażenie na przekrój czynny ma postać

σ ∼ PCFr

gdzie
Fr = [(E − ER)2 + (Γ/2)2]−1

i

Γ =
h

2πτ
<< Er

Jeżeli rezonans występuje przy niskich energiach, to często
dominujący wkład do całki w wyrażeniu na rj ,k pochodzi z okolicy
E = Er i we wszystkich pozostałych funkcjach E (oprócz Fr )
można tę równość założyć.∫ ∞

0
FrdE =

2π
Γ



Reakcje rezonansowe c.d.

W związku z tym dostajemy

λj ,k ∼ T
−3/2
7 exp

(
−1161Er

T7

)
(21)

Gdzie Er wyrażone jest w MeV.
Jeżeli reakcja rezonansowa wyznacza tempo cyklu, to wykładnik
temperaturowy dany jest przez

ET ≈
1161Er

T7
− 3

2
(22)



Dane doświadczalne

Rysunek: Rysunek 6.4 z C.J. Hansen, S.D. Kawaler, V. Trimble Stellar
Interiors



Przebieg funkcji S

Rysunek: Rysunek 6.5 z C.J. Hansen, S.D. Kawaler, V. Trimble Stellar
Interiors



Tempo zachodzenia reakcji 12C +1 H →13 N

Rysunek: Rysunek 6.6 z C.J. Hansen, S.D. Kawaler, V. Trimble Stellar
Interiors



Reakcje jądrowe przed ciągiem głównym i w brązowych
karłach

Fuzja deuteru zachodzi już w tamperaturach 106 K Może
zachodzić w obiektach o masie M ≥ 13MJ

2H +1 H →3 He + γ

Fuzja litu zaczyna być istotna w temperaturze ok. 3 · 106 K. Taka
temperatura osiągana jest we wnętrzach obiektów o M ≥ 60MJ

7Li +1 H →4 He +4 He

Dla obiektów o masie większej niż ≈ 80MJ(0.08M�) zaczyna się
synteza wodoru



Reakcje jądrowe ma MS - cykl P-P
I Synteza dwóch protonów (pa)

1H +1 H →2 H + e+ + νe + 0.42MeV

Odbywa sie ona w dwóch etapach: - utworzenie jądra 2He -
rozpad beta plus tworzący deuter 2H (zachodzi on bardzo
rzadko - oddziaływanie słabe, najczęściej 2He rozpada się na
dwa protony) Dzięki emisji pozytronu mamy dodatkowy zysk
energii z anihilacji par e−e+ (1.02 MeV).

I Synteza deuteru w hel 3 (pb)

2H +1 H →3 He + γ + 5.49MeV

Zachodzi bardzo szybko (średni czas życia deuteru we wnętrzu
Słońca to ok. 4 min)

I Synteza 3He w 4He (pc)

3He +3 He →4 He + 21H + 12.86MeV

Średni czas życia 3He we wnętrzu Słońca to ok. 400 lat



Reakcje jądrowe ma MS - cykl P-P

Reakcje termojądrowe (pa, pb, pc) nazywane są cyklem PP-I
Powstaje w nim większość energii Słońca (ok 85%, z tego w
samym wnętrzu ok. 69%). Całkowity zysk energetyczny wynosi
26.73 MeV na jedno wyprodukowane jądro 4He, neutrina unoszą
2% energii cyklu
Cykl PP-II

(pd) 3He +4 He →7 Be + γ
(pe) 7Be + e− →7 Li + νe(+γ)
(pf ) 7Li +1 H →4 He +4 He

Cykl PP-II odpowiada za ok 14% energii Słońca. Głównym
źródłem energii jest synteza litu z wodorem (daje 17.37 MeV)
Neutrina unoszą 4% energii cyklu (energia νe powstającego w
reakcji (pe) to w 90% 0.861 MeV, a w 10% 0.383 MeV)



Reakcje jądrowe ma MS - cykl P-P

Cykl PP-III
(pg) 7Be +1 H →8 B + γ
(ph) 8B →8 Be + e+ + νe

(pi) 8Be →4 He +4 He

Ta gałąź cyklu P-P odpowiada tylko za 0.1% jego jasności, stanowi
jednak źródło wysokoenergetycznych neutrin z energią do 14 MeV,
a całkowita strata energii w wyniku emisji neutrin wynosi w tym
cyklu 28%.



Cykl P-P

Tempo reakcji cyklu wyznaczone jest przez reakcję (pa)

rp−p = rpa ≈ 2.48 · 1012
X 2ρ22
T 2/37

exp

(
−15.7

T 1/37

)
cm−3s−1 (23)

Tempo produkcji energii na 1 g

εp−p =
Qp−p,eff rp−p

ρ
≈ 5.2 ·106

X 2ρ2

T 2/37
exp

(
−15.7

T 1/37

)
erg/g/s (24)

Wykładnik temperaturowy dla cyklu p-p

εT =
5.2

T 1/37
− 2

3

Dla centrum Słońca εT ≈ 3.9



Tempo zachodzenia reakcji w cyklu PP

Rysunek: Rysunek 6.9 z C.J. Hansen, S.D. Kawaler, V. Trimble Stellar
Interiors



Reakcje jądrowe ma MS - cykl CNO

Cykl CNO zachodzi w obecności cięższych pierwiastków i jest
dominujący dla gwiazd MS o masach powyżej ok. 1.5 M� (w
zależności od metaliczności). Na Słońcu odpowiada on za
produkcję ok 1.5 % energii

Cykl CNO-I



Reakcje jądrowe ma MS - cykl CNO

Cykl CNO-II



Reakcje jądrowe ma MS - cykl CNO
Reakcje cyklu CNO są nierezonansowe. Reakcją określającą tempo
reakcji cyklu jest

(cd) 14N +1 H →15 O + γ

Tempo produkcji energii na 1 g, przy założeniu, że połowa
zawartości metali Z przypana na C N O w przybliżeniu wynosi

εCNO =
QCNO,eff rCNO

ρ
≈ 9.5 · 1027

XZρ2

T 2/37
exp

(
−70.5

T 1/37

)
erg/g/s

(25)
Wykładnik temperaturowy dla cyklu CNO

εT =
23.5

T 1/37
− 2

3

Dla centrum Słońca εT ≈ 19.6, a dla centrum gwiazdy ZAMS o
masie 5M� εT ≈ 16.2
Ze względu na tempo reakcji (cd) prawie cały CNO w obszarze
zachodzenia reakcji zamieniony jest na 14N, a stosunek zawartości
12C/13C ≈ 3.5



Reakcje poza MS - cykl 3 α
Syntezę jądrową w helowym jądrze inicjuje reakcja

(3αa) 4He +4 He →8 Be

Jest to reakcja odwrotna do reakcji kończącej gałąź PPIII cyklu
p-p i potrzebna jest do jej zajścia energia 91.8 keV. Jądra 8Be
rozpadają się w czasie 2.6 · 10−16 s na dwa jądra 4He. Można
oszacować liczbę jąder 8Be korzystając z odpowiednika równania
Sahy, gdy potraktujemy rozpad jako jonizację z ujemną energią, a
za masę elektronu podstawimy masę cząstki α.

N(8Be) = 1.87 · 10−33T−3/28 N2He exp

(
−10.65
T8

)
cm−3 (26)

Dla gwiazdy o masie 1 M� efektywna synteza węgla zaczyna się
przy T8 ≈ 1.1 i ρ6 ≈ 1, co odpowiada NHe ≈ 1.5 · 1029. Wtedy

N(8Be) = 1.75 · 10−8NHe



Cykl 3 α
Nawet tak mała liczba jąder 8Be jest wystarczająca do
efektywnego zachodzenia reakcji rezonansowej

(3αb) 4He +8 Be →12 C + γ

Reakcje ((3αa) i (3αb) tworzą cykl 3α w którym

Qeff = 7.367− 0.0918 = 7.275MeV

Tempo cyklu wyznacza rezonansowa reakcja (3αb) z
Er = 0.287MeV

ε3α ≈ 5 · 1029
ρ26Y

3

T 38
exp

(
−43.97
T8

)
erg/g/s (27)

Wykładnik temperaturowy wynosi w związku z tym

εT =
43.97
T8

− 3

εT ≈ 37 dla gwiazd o masie 1M�, εT ≈ 31 dla gwiazd o masie
5M�.



Cykl 3α i spalanie węgla
Początek spalania helu w jądrach gwiazd o masie mniejszej niż ok.
2.3 M� ma charakter ekspozywny (błysk helowy) ze względu na
degenerację.
Kolejną istotną reakcją w helowych jądrach jest

12C +4 He →16 O + γ + 7.162MeV

Wyliczenie tempa tej reakcji stanowi poważny problem dla fizyki
jądrowej Ewolucję ilości atomów He (N4), C(N12) i O (N16) w
jednostce objętości opisują równania

dN4
dt

= −3λ3αN34 − λα,12N4N12

dN12
dt

= λ3αN34 − λα,12N4N12

dN16
dt

= λα,12N4N12



Cykl 3α i spalanie węgla

Po zakończeniu palenia helu w jądrze gwiazdy najobfitszymi
pierwiastkami są węgiel i tlen. Ich względna obfitość zależy od
(niepewnej) wartości λα,12
W czasie działania cyklu 3α produkowana jest również pewna ilość
neonu w reakcji

16O +4 He →20 Ne + γ + 4.734MeV



Reakcje po wypaleniu helu

I W temperaturze T8 > 5 zaczyna być istotna reakcja.

12C +12 C

Powstaje wzbudzone jądro magnezu, które ma kilka kanałów
rozpadu (20Ne, 23Na, 23Mg , 24Mg). Całkowita przemiana
12C +12 C w 24Mg daje Q=13.933 MeV

I W temperaturze T9 > 1 zaczyna się palenie helu w reakcji

16O +16 O

Jej głównymi produktami są krzem 28Si i siarka 32S .
Całkowita przemiana 16O +16 O w 32S daje Q=16.542 MeV

I W temperaturze T9 ≈ 3 zaczyna sie spalanie Si prowadzące
do powstania żelaznego jądra.



Ostatnie fazy ewolucji

I Proces palenia węgla w konwektywnych jądrach trwa ok. 100
lat.

I Kolejne fazy ewolucji: synteza Si i cięższych jąder aż do Fe
zachodzą w skali miesięcy i dni.

I Kreacja par elektron - pozyton, emisja neutrin,
I Fotodezintegracja jąder żelaza, wychwyt elektronów.
I Zapadnięcie żelaznego jądra (wybuch SN Ib/c, SN II)



Równania w zależności od promienia

I Równanie ciągłości
dMr

dr
= 4πr2ρ (28)

I Równanie równowagi hydrostatycznej

dP
dr

= −GMr

r2
ρ (29)

I Równanie na tempo produkcji energii

dLr

dr
= 4πr2ρε (30)

I Gradient temperatury

dT
dr

=
d lnT
d lnP

T
P
dP
dr

= ∇T
P
dP
dr

(31)



Równania w zależności od masy

I Równanie ciągłości
dr
dMr

=
1

4πr2ρ
(32)

I Równanie równowagi hydrostatycznej

dP
dMr

= −GMr

4πr4
(33)

I Równanie na tempo produkcji energii

dLr

dMr
= ε (34)

I Gradient temperatury

dT
dMr

=
d lnT
d lnP

T
P
dP
dMr

= ∇T
P
dP
dMr

(35)



I Przypadek promienisty i konwektywny

∇ =

{
∇rad = 3κLr P

16πGacMr T 4 dla ∇rad ≤ ∇ad

∇ad +∇n dla ∇rad > ∇ad
(36)

I Wartość ∇n możemy wyznaczyć z równania wynikającego z
MLT

I W głębokich wnętrzach gwiazd możemy przyjąć, że ∇n = 0.



Dane materiałowe.

I Równania budowy wewnętrzniej dla sferycznie symetrycznych
gwiazd muszą być uzupełnione przez dane fizyczne
(najczęściej stablicowane) takie jak:

P = P(ρ,T ,X)

u = u(ρ,T ,X)

κ = κ(ρ,T ,X)

ε = ε(ρ,T ,X)

i ich potrzebne pochodne
I Dodatkowo dla modelu wyjściowego musimy podać X(Mr ).
I Najczęściej przyjmuje się, że modele gwiazd ciągu głównego

wieku zerowego (ZAMS) są jednorodne chemicznie ze względu
na całkowicie konwektywne modele przed osiągnięciem ZAMS
(faza Hayashiego)



Warunki brzegowe

I Warunki brzegowe są określone zarówno we wnętrzu, jak i na
powierzchni (są dwupunktowe)

r(Mr = 0) = 0 Lr (Mr = 0) = 0

ρ(Mr = M) = 0 T (Mr = M) = 0

I Zamiast zerowego warunku na temperaturę można podać
warunek wynikający z przybliżenia Eddingtona

T (Mr = M) = (1/2)1/4Tef =

(
L

8πσR2

)1/4
I Zaawansowany górny warunek brzegowy będzie związany z

rozwiązaniem równań transferu i równowagi hydrostatycznej
dla atmosfery, które należy uzyskać do głębokości na której
pole promieniowania jest już praktycznie takie, jak wynika z
przybliżenia dyfuzyjnego.



Modele homologiczne jednorodne chemicznie
Zanim omówimy rozwiązanie równań budowy wewnętrznej
otrzymamy przybliżone zależności dla gwiazd jednorodych
chemicznie znajdujących się w równowadze hydrostatycznej i
termicznej.
Skorzystamy z modeli samopodobnych (homologicznych) dla
których przebieg wartości

r
R

(
Mr

M

)
,
ρ

ρc

(
Mr

M

)
,
Lr

L

(
Mr

M

)
,
T
Tc

(
Mr

M

)
,

jest taki sam.
Przyjmujemy następujące założenia: równanie stanu gazu
doskonałego

P ∼ ρT
µ

potęgowa zależność od gęstości i temperatury dla współczynnika
nieprzezroczystości i tempa produkcji energii

κ = κ0ρ
qT−s ε = ε0ρT b



Modele homologiczne c.d.
Dla modeli homologicznych mamy następujące relacje

ρc ∼
M
R3

Tc ∼
µM
R
∼ µM2/3ρ1/3c

Pc ∼
M2

R4
∼ M2/3ρ4/3c

∇rad ∼
Lr

Mr

κP
T 4
∼ Lr

Mr

κ0ρ
q+1

T s+3

czyli dla modeli homologicznych

L
M
∼ µ

κ0

T s+3
c

ρq+1
c

Dla tempa produkcji energii

L
M
∼ ε0ρcT b

c



Modele homologiczne c.d.
Możemy zapisać zależność gęstości centralnej od temperatury

ρc ∼
(

µ

κ0ε0

)1/(q+2)
T (s−b+3)/(q+2)

c

dla prawa Kramersa mamy κ0 ∼ ρT−3.5 Z zależności

ρc ∼ µ−3T 3cM−2

dostajemy zależność Tc od masy o składu chemicznego gwiazdy

Tc ∼ M(2q+4)/dµ(3q+7)/d (κ0ε0)
−1/d

gdzie d ≡ b − s + 3 + 3q
Z powyższych wzorów można otrzymać zależność jasności od masy
i składu chemicznego

L ∼ MwMµwµε1+wk
0 κwk

0



Modele homologiczne

L ∼ MwMµwµε1+wk
0 κwk

0

gdzie:

wM = 1 +
2
d

(b(q + 1) + s + 3)

wµ =
1
q + 2

(
1 + (2q + 7)

b(q + 1) + s + 3
d

)
wk = − 1

q + 2

(
1 +
b(q + 1) + s + 3

d

)
Stosunkowo najczęściej będzie wykorzystywana zależność L(M).
Dla cyklu p-p (b=4) i prawa Kramersa (q = 1, s=3.5)

L ∼ M5.46

Dla cyklu CNO (b=16) i prawa Kramersa (q = 1, s=3.5)

L ∼ M5.14

Jeżeli q=0 i s = 0, to
L ∼ M3



Modele homologiczne c.d.

Zależność od średniego ciężaru cząsteczkowego w przypadku s=0,
q=0

L ∼ µ4



Rozwiązanie równań
Cztery równania budowy wewnętrznej rozwiązuje się metodą
iteracji ze zszywaniem w punkcie pośrednim Mr = Mfit .
Potrzebna jest znajomość przybliżonych wartości ρc Tc (w Mr =
0) i L i R (lub Tef ) w Mr = M.
Rozwiązanie od centrum zaczyna się od skończonej, ale
dostatecznie małej wartości Mr . Możemy wtedy położyć ρ = ρc i

r =

(
3Mr

4πρc

)1/3
z równania

dP
dr

= −ρGMr

r2

wynika przy r → 0 (
d2P
dr2

)
c

= −4π
3
Gρ2c



Rozwiązanie równań budowy wewnętrznej

Podstawiając do rozwinięcia na P wokół r=0

P = Pc −
1
2

(
d2P
dr2

)
c
r2 = Pc −

G
2
M2/3r

(
4
3
πρ4c

)1/3

T = Tc −
Tc

Pc
Min(∇rad ,c ,∇ad ,c )

G
2
M2/3r

(
4
3
πρ4c

)1/3
,

gdzie

∇rad ,c =
3

16πacG
Pcκcεc

T 4c
W głębokim wnętrzu zaniedbujemy ∇n

Z powodów numerycznych nie nie dochodzi się do powierzchni
gwiazdy, ale kontynuuje się wylicznie zmiennych do wybranej
wartości Mr = Mfit



Rozwiązanie równań budowy wewnętrznej

Oznaczmy wartości czterech wybranych zmiennych zależnych w
punkcie zszycia przez yj ,c (j=1,2,3,4), ich wartości są funkcjami
ρc = x1 i Tc = x2.
Całkowanie od powierzchni wgłąb wykonujemy dla próbnych
wartości L = x3 i T (M) = (12)

1/4Tef = x4. Musimy jeszcze przyjąć
wartość małą wartość na ρ(M) na przykład 10−12 i możemy
rozpocząć całkowanie wgłąb do Mr = Mfit . Wartości zmiennych
zależnych w tym punkcie oznaczamy yj ,e . Zazwyczaj

dj = yj ,e − yj ,c 6= 0

Wartości xk zmieniamy tak długo, aż asiągniemy dopasowanie z
założoną dokładnością (Max|dj/yj | mniejsze od ustalonej liczby).



Rozwiązanie równań budowy wewnętrznej

Poprawki ∆xk można wyznaczyć n.p. metodą iteracji zakładając
przybliżenie liniowe na każdym kroku. Wartości ∆xk dostajemy
jako rozwiązania równań

2∑
j=1

∂yj ,c
∂xk

−
4∑

j=3

∂yj ,e
∂xk

= dj (37)

Pochodne cząstkowe wyliczamy numerycznie.
Wyznaczone poprawki dodaje się do xk i proces powtarza się aż do
uzyskania wymaganej dokładności zszycia.



Niestabilność cieplna
Równanie (37) nie ma rozwiązań jeżeli wyznacznik macierzy

Mjk ≡
∂yj ,c
∂xk

−
∂yj ,e
∂xk

= 0

Wiąże się to z neutralną stabilnością względem zaburzeń cieplnych.
Zapiszmy pierwsze prawo termodynamiki w postaci:

T
dS
dt

=
du
dt
− P
ρ2
dρ
dt

= ε− dLr

dMr
(38)

Zakładamy, że zaburzony model jest w stanie równowagi, nie
zmienia się skład chemiczny i można równanie zlinearyzować
przyjmując zależność czasową w postaci exp (γt).
Dodatkowo linearyzując zależność ε(ρ,T ) otrzymamy

γT δS = ε

(
εT
δT
T

+ ερ
δρ

ρ

)
− dδLr

dMr
(39)



Niestabilność cieplna c.d.
I Jako podstawowych zmiennych termodynamicznych użyjemy
S i P.

δT
T

= ∇ad
δP
P

+
δS
cP

(40)

δρ

ρ
=

1
Γ1

δP
P
− χT

χρ

δS
cP

(41)

I W obszarach o wydajnej konwekcji mamy

dδS
dMr

= 0 (42)

I Możemy przyjąć, że obszary o niewydajnej konwekcji, leżące
blisko powierzchni gwiazdy pozostają w równowadze cieplnej.

I Dla obszarów promienistych najwygodniej będzie nam
skorzystać ze związku

d lnT
dMr

∼ Lrκ

(rT )4
(43)



Niestabilność cieplna c.d.

I Linearyzacja równania (43) daje nam związek

d
dMr

(
δT
T

)
= ∇rad

d lnP
dMr

[
δLr

Lr
+ (κT − 4)

δT
T

+ κρ
δρ

ρ
− 4

δr
r

]
(44)

I Zaburzenie może nam zmieniać granicę obszaru
konwektywnego. Przesunięcie tej granicy opiszemy wzorem

δMc = −δD
(
dD
dMr

)−1
,

gdzie D ≡ ∇rad −∇ad



Niestabilność cieplna c.d.
I Dla obszaru niekonwektywnego możemy zapisać zaburzenie

strumienia promienistego

δLr

Lr
= − 4πPr4

GMr∇rad

d
dMr

(
δS
cP

+∇ad
δP
P

)
+4

δr
r

+bS
δS
cP

+bP
δP
P
,

(45)
gdzie

bS = 4− κT + κρ
χT

χρ
,

bP = (4− κT )∇ad
κρ
Γ1

I Linearyzacja równania ciągłości daje

dδr
dMr

= −
(

2
δr
r

+
1
Γ1

δP
P
− χT

χρ

δS
cP

)
dr
dMr

(46)

I Linearyzacja równania równowagi hydrostatycznej daje

dδP
dMr

= −4
δr
r
dP
dMr

(47)



Niestabilność cieplna c.d.

I Eliminacja δr i δP jest skomplikowana, ale na końcu
otrzymujemy równanie na wartość własną γ

γT δS = N (δS) (48)

N jest operatorem liniowym, różniczkowo-całkowym i na ogół
nie jest hermitowski. Wartości własne mogą tworzyć zespolone
pary γ i γ∗ . Przejście od modeli stabilnych do niestabilnych
może zajść w modelu z Det(Mjk ) 6= 0



Niestabilność cieplna - model uproszczony

I Założymy równanie stanu gazu doskonałego, i stałe
współczynniki εT , ερ, κT , κρ. Rozwiązań równania będziemy
szukać w postaci homologicznej z δr/r = const

I Z równania (47) otrzymujemy

δP
P

= −4
δr
r

I Z równania (46) otrzymujemy:

dS
cP

= 3
δr
r

+ 0.6
δP
P

= −0.15
δP
P

I Z równań (41) i (40) otrzymamy

δρ
ρ = 0.75 δP

P i δT
T = 0.25 δP

P



Niestabilność cieplna - model uproszczony
I Równanie na zaburzenie jasności w obszarze promienistym

δLr

Lr
= (−0.15bS + bP − 1)

δP
P

= −(0.25κT + 0.75κρ)
δP
P

I Podstawienie do wzoru na pochodną czasową entropii daje

[0.6cPTγ + ε(εT + κT + 3ερ + 3κρ)]
δP
P

= 0

I Wzór ten nie prowadzi do wartości γ niezależnej od Mr , ale do
przybliżonej oceny stabilności możemy skorzystać ze
scałkowanej wersji tego warunku, który możemy zapisać w
postaci:

γ̄ = −5(εT + κT ) + 15(ερ + κρ)

3τ̄th
, (49)

gdzie

τ̄th = L−1
∫
cPTdMr ∼ τth



Niestabilność cieplna - model uproszczony

I We wzorze na γ tylko κT zazwyczaj jest mniejsze od 0 ale nie
na tyle aby dostać γ̄ > 0

I Zaburzenia ε działają stabilizująco w modelu homologicznym
ze względu na przeciwne znaki zaburzeń entropii i
tempertatury. Podobnie jest w gwiazdach zbudowanych z gazu
niezdegenerowanego.

I Dla obszarów w których mamy gaz zdegenerowany w
przypadku zaburzeń cieplnych mamy∣∣∣∣δPP

∣∣∣∣ << ∣∣∣∣δTT
∣∣∣∣

i
δS
cP
≈ δT
T

Nie działa ciśnieniowy zawór bezpieczeństwa i reakcje jądrowe
zaczynają się w sposób eksplozywny.



Niestabilność cieplna
I Dla zaburzeń zlokalizowanych w cienkich warstwach z

aktywnymi reakcjami jądrowymi nie można znacząco zmienić
ciśnienia zmieniając rozkład masy w tej warstwie. Taka
niestabilność może występować w warstwie palenia helu nad
zdegenerowanym jądrem węglowo - tlenowym i w jej wyniku
otrzymujemy pulsy cieplne

Ewolucja zachodzi przy braku równowagi cieplnej również gdy brak
jest dostatecznie wydajnych jądrowych źródeł energii.

I Kontrakcja w cieplnej skali czasu przed ciągiem głównym,
temperatura zbyt niska dla syntezy wodoru.

I Po opuszczeniu ciągu głównego w jądrze helowym nie ma
reakcji termojądrowych i staje się ono izotermiczne, jeżeli jego
względna masa przekroczy krytyczną wartość, to następuje
jego kurczenie się w cieplnej skali czasu. Prowadzi ono do
degeneracji gazu, albo dla masy przekraczającej ok 2.3 M�
początku syntezy węgla w gazie niezdegenerowanym


