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Masa Jeansa
Załóżmy, że mamy jednorodny, kulisty obłok gazu o masie M,
średniej masie cząsteczkowej µ, promieniu R i temperaturze T
Energia wiązania grawitacyjnego tego obłoku wynosi
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W przypadku równowagi W = −2U, gdzie

U =
3
2
k
µm
MT .

Można przyjąć, że aby obłok gazu zaczął się zapadać musi być
spełnione równanie
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Masa Jeansa, gęstość Jeansa

Otrzymujemy w związku z tym warunek na masę obłoku w
zależności od jego temperatury i gęstości (masa Jeansa)
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lub warunek na gęstość w zależności od tamperatury i masy
(gęstość Jeansa)
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Masa Jeansa - przykłady

I Masa Jeansa dla obłoku molekularnego (H2, µ = 2) o
T = 10K i n = 103 cm−3. Gęstość wynosi ok. 3.3 · 10−21

g/cm3 (promień .49 pc)

MJ ≈ 1.32 · 1035g ≈ 66.2M�

I Masa Jeansa dla obłoku neutralnego wodoru (H, µ = 1) o
T = 100K i n = 103 cm−3. Gęstość wynosi ok. 1.6 · 10−21

g/cm3.
MJ ≈ 6 · 1036g ≈ 3000M�

I Masa Jeansa dla obłoku zjonizowanego wodoru (HII , µ = 0.5)
o T = 104K i n = 103 cm−3. Gęstość wynosi ok. 8 · 10−22

g/cm3.
MJ ≈ 8.5 · 1038g ≈ 4.25 · 106M�



I Gęstość Jeansa dla masy Słońca i T=10 K, wodór molekularny

ρJ =
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)3( 3
4πM2

)
= 3 · 10−18g/cm3

I Odpowiada temu n ≈ 8 · 105 1/cm3 Jest to wartość znacznie
większa niż typowe gęstości gazu w obłokach molekularnych.
Do powstania gwiazd o mniejszej masie może dojść w wyniku
kolapsu masywnego i chłodnego obłoku gazu i jego późniejszej
fragmentacji.



Oszacowanie czasu swobodnego spadku

I Przyjmijmy, że mamy obłok cząsteczkowego wodoru o gęstości
(H2, µ = 2) o T = 10K i n = 103 cm−3. Gęstość wynosi ok.
3.3 · 10−21 g/cm3. Będziemy korzystać ze wzoru na czas
swobodnego spadku
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Czas kolapsu w przybliżeniu swobodnego spadku będzie wynosił w
tym przypadku ok. 3.7 · 1013 s, czyli ok. 600 tys. lat



Protogwiazdy

I Start kolapsu: T̄ ≤ 103 K - obłok gazu przezroczysty (małe
κν) (swobodny spadek, utrata energii przez promieniowanie)

I Wczesny kolaps: wzrost gęstości i temperatury centralnych
części obłoku do T̄ ≤ 104 K, duża nieprzezroczystość jądra i
zatrzymanie jego kolapsu, akrecja na nie materii o małej
nieprzezroczystości - rozpad molekularnego H2 usuwa energię
z gazu i powoduje dalszy kolaps.

I Późny kolaps: T̄ > 104 K - jonizacja H, He - silny wzrost
nieprzezroczystości - gwiazda całkowicie konwektywna
∇rad > ∇ad

I Koniec kolapsu: zjonizowana plazma - spadek κν - transport
energii przez promieniowanie - pierwsze reakcje termojądrowe



Faza Hayashiego

I Etap ewolucji gwiazdy od momentu, kiedy staje się
konwektywna, do zapalenia wodoru w centrum gwiazdy.

I Zakładamy w pełni konwektywną gwiazdę (dla uproszczenia o
n = 1.5) z atmosferą z gazu doskonałego (dla r > R).

I Wnętrze opisane zależnością politropową

P = Kρ1+1/n

Mamy zależność stałej K od M i R (wykład 2)
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Na szczycie konwektywnego wnętrza mamy ciśnienie PR
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Faza Hayashiego - równania
I Poprzednie równanie możemy zapisać w postaci logarytmicznej

n logPR = (n−1) logM+(3−n) logR+(n+1) log ρR +const
(4)

I Z równania stanu gazu doskonałego na powierzchni
konwektywnego wnętrza

logPR = log ρR + logTef + const (5)

I Z równania na jasność protogwiazdy

log L = 2 logR + 4 logTef (6)

I Z równania równowagi hydrostatycznej wynika, że ciśnienie
PR będzie się wiązało z całką po gęstości w fotosferze

PR =
GM
R2

∫ r(τ=0)

R
ρdr



Faza Hayashiego - równania

I Powierzchnia fotosfery określona jest przez∫ r(τ=0)

R
κρdr = κ̄

∫ r(τ=0)

R
ρdr ≈ 1

w związku z tym ∫ r(τ=0)

R
ρdr ≈ 1

κ̄

I Wartość κ̄ = κ0ρ
q
RT

s
ef

I Wstawione do równania równowagi hydrostatycznej daje
logarytmiczną zależność

logPR = logM − 2 logR − q log ρR − s logTef + const (7)



Faza Hayashiego - równania
I Zbieramy cztery równania

n logPR = (n−1) logM+(3−n) logR+(n+1) log ρR +const

logPR = log ρR + logTef + const

log L = 2 logR + 4 logTef

logPR = logM − 2 logR − q log ρR − s logTef + const

I Eliminujemy z nich logR, logPR i log ρR

I Otrzymujemy zależność pomiędzy log L, logTeff i logM

log L = A logTef + B logM + const (8)

gdzie

A =
(7− n)(q + 1)− 4− q − s

0.5(3− n)(q + 1)− 1

B =
(n − 1)(q + 1) + 1

0.5(3− n)(q + 1)− 1



Faza Hayashiego - zależność L− Tef i L−M

I Podstawienie do wzorów na wykładniki wartości typowych dla
niskich temperatur (n=3/2, q = 0.5, s= 4) daje A = 62, B =
14

I Linie ewolucji gwiazd w pierwszym etapie fazy Hayashiego są
prawie pionowe

I Podstawienie do wzoru na wykładniki wartości
odpowiadających wzorowi Kramersa (n=3/2, q = 1, s= -3.5)
daje A = 5, B = 4



Zależność od czasu

I Ze względu na bardzo stromą zależność L(Tef ) możemy
przyjąć, że Tef = const

I Na pierwszym etapie ewolucji możemy pominąć reakcje
jądrowe

dE
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=
1
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Pamiętamy, że dla politrop

W = − 3
5− n
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R

W związku z tym zależność promienia od czasu może być
opisana jako

d lnR
dt

= − 7
3τth



Ścieżka ewolucyjna Henyey’a
I Po osiągnięciu odpowiednio wysokiej temperatury

nieprzezroczystość maleje i gwiazda (o odpowiedniej masie)
staje się promienista

I Głównym źródłem energii ciągle jest grawitacyjna kontrakcja
I Pochodna po czasie jasności będzie opisana wzorem
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]
I Z twierdzenia o wiriale wynika, że druga pochodna momentu

bezwładności powinna być równa 0
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I Podstawienie wzoru na drugą pochodną R po czasie da
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Ścieżka ewolucyjna Henyey’a c.d.
I Dzieląc poprzednie równanie przez

L = −1
2
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2
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dR
dt

otrzymamy
1
L
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czyli
d ln L
d lnR

= −3

I Z równania

d ln L = 2d lnR + 4d lnTef →
d ln L
d lnR

= 2 + 4
d lnTef

d lnR

otrzymamy

d lnTef
d lnR = −54 i

d ln L
d lnTef

= 12
5



Główne reakcje termojądrowe przed osiągnięciem MS

I Faza spalania deuteru zachodzi dla T6 ≈ 0.8 dla M = 0.08M�
i T6 ≈ 2 dla M = 1.2M�

I Spalanie litu zachodzi przy T6 ≥ 3, nie wpływa jednak
znacząco na ewolucję ze względu na małą obfitość tego
pierwiastka (X7 = 10−8).

I Dla gwiazd a masach M ≥ 0.6M� zachodzi reakcja

12C + p →13 N + γ



Rysunek: Kontrakcja na ciąg główny dla gwiazd w zakresie masy 0.1-6.0
M� (Steven W. Stahler and Francesco Palla, ”The Formation of Stars”)



Rysunek: Kontrakcja na ciąg główny dla gwiazd o małych masach M�
(W. Dziembowski w oparciu o D’Antona i Mazzitelli 1998)



Rysunek: Zmiany promienia w czasie kontrakcji na ciąg główny dla
gwiazd o małych masach M� (W. Dziembowski w oparciu o D’Antona i
Mazzitelli 1998)



Powstawanie gwiazd masywnych

I Akrecja na jądro jest istotna aż do osiągnięcia ciągu głównego
(rozważane tempa akrecji 10−5-10−3 M�/rok

I Modele ze sferyczną akrecją
I Modele z akrecją dyskową
I Symulacje hydrodynamiczne



Model z pracy Hosokawa i inni 2010

Rysunek: Model sferycznej akrecji po lewej i dyskowej akrecji po prawej
stronie



Model z pracy Hosokawa i inni 2010

Rysunek: Ewolucja promienia w modelu ze stałym tempem akrecji
dyskowej 10−3M�/rok



Model z pracy Hosokawa i inni 2010

Rysunek: Ewolucja jasności w modelu ze stałym tempem akrecji dyskowej
10−3M�/rok



Model pracy Kuiper i York 2014

I Symulacje numeryczne akrecji z obłoku i obliczenia ewolucji
gwiazdowej dla centralnej części w równowadze
hydrostatycznej

I Początkowa masa części centralnej 0.05 M�, promień 0.54
Rodot , jasność 0.022 L�

I Promień obłoku 0.1 pc, masa 100 M�, profil gęstości ρ ∼ r−2
(model A),ρ ∼ r−3/2 (modele B i C), stosunek energii rotacji
do energii wiązania grawitacyjnego 0.01, 0.017 i 0.05 dla
modeli A, B, C.

I Masa zaakreowana na część centralną odpowiednio 40, 30 i 21
Modot



Model z pracy Kuiper i York 2014

Rysunek: Ewolucja na diagramie H-R modelu B i modelu o stałym tempie
akrecji 9 · 10−4M�/rok



Model z pracy Kuiper i York 2014

Rysunek: Zmiany promienia w modelu B i modelu o stałym tempie
akrecji 9 · 10−4M�/rok . Faza I skala czasowa akrecji dużo krótsza niż
skala cieplna, II rozszerzanie, III - kontrakcja w cieplnej skali czasu, IV -
ciąg główny



Model z pracy Kuiper i York 2014

Rysunek: Tempo akrecji w modelu B. Utworzenie dysku nastąpiło
przyM = 7M�



Model z pracy Klassen i inni 2016

Rysunek: Parametry początkowe modeli



Model z pracy Klassen i inni 2016

Rysunek: Obrazy z symulacji z M = 100M�



Model z pracy Klassen i inni 2016

Rysunek: Obrazy z symulacji z M = 100M�



Model z pracy Klassen i inni 2016

Rysunek: Przebieg głównych parametrów w zależności od czasu w trakcie
symulacji



Modele na ciągu głównym wieku zerowego ZAMS

I Kontrakcja modeli kończy się na ciągu głównym wieku
zerowego (ZAMS)

I Zakładamy, że modele ZAMS są chemicznie jednorodne
I Przybliżone zależności L(M), R(M), Tc (M), ρc (M) można

otrzymać z modeli homologicznych.
I Modele na ZAMS nie są homologiczne dla większych

przedziałów masy (całkowicie konwektywne dla M < 0.3M�,
konwektywne otoczki konwektywne jądra dla M > 1.3M�

I Typowy zakres rozpatrywanych mas jest w granicach
0.1− 100M� i jasności w granicach 10−3 − 106 L�

I Gwiazdy na ZAMS rozpoczynają najdłuższy etap gwiazdowej
ewolucji - okres stabilnych reakcji termojądrowych
zamieniających wodór w hel.



Obecność stref konwektywnych w gwiazdach ZAMS

Rysunek: Rysunek z książki Kippenhahn i Weigert Stellatr Structure and
Evolution



Zależność L(Tef ) dla modeli ZAMS

Rysunek: Rysunek z O.R.Pols Stellatr Structure and Evolution



Zależność L(M) i R(M) dla modeli ZAMS

Rysunek: Rysunek z O.R.Pols Stellatr Structure and Evolution



Zależność Tc(ρc) dla modeli ZAMS

Rysunek: Rysunek z O.R.Pols Stellatr Structure and Evolution



Przebieg gęstości wewnątrz modeli ZAMS

Rysunek: Rysunek z Kippenhahn i Weigert Stellatr Structure and
Evolution



Przebieg temperatury wewnątrz modeli ZAMS

Rysunek: Rysunek z Kippenhahn i Weigert Stellatr Structure and
Evolution



Przebieg tempa produkcji energii i jasności wewnątrz
modeli ZAMS

Rysunek: Rysunek z Kippenhahn i Weigert Stellatr Structure and
Evolution



Jasność i liczba wysokoenergetycznych fotonów dla ZAMS
III populacji

Rysunek: Tabela 3 z pracy Schaerer 2002


