Wyktad 12 - Ewolucja na ciggu gtéwnym.
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Ciag gtéwny

Najdtuzsza faza ewolucyjna dla gwiazd zwigzana z zamiang wodoru
w hel.

» Zmiany sktadu chemicznego w centrum gwiazdy
poczatek: X=0.7, Y=0.28, Z=0.02 to dla zjonizowanego

gazu
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> Zmniejszenie liczby czastek — kontrakcja dla zachowania
cisnienia zwiekszenie gestosci —zwiekszenie temperatury —
zwiekszenie tempa przemian jadrowych.



Zmiany parametréw centralnych

» Przyblizamy strukture gwiazdy jako politropowsa i réwnanie
stanu gazu doskonatego.
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Zmiany parametréw centralnych - model uproszczony

Rysunek: Wyidealizowane zmiany gestosci i temperatury centralnej
Krzysztof Belczynski - Wyktad z Astrofizyki |



Zmiany sktadu chemicznego gwiazdy podobnej do Stonca
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Rysunek: Zmiany sktadu chemicznego we wnetrzu gwiazd. Model o masie
1 Mg X=0.7, Z=0.02 w wieku 0.0, 2.2, 4.2, 6.2 8.2 10.4 i 11.2 Gy.
(Kippenhahn, Weigert, Weiss “Stellar structure and evolution™)



Zmiany tempa produkcji energii
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Rysunek: Zmiany tempa produkgcji energii we wnetrzu gwiazd. Model o
masie 1 Mg X=0.7, Z=0.02 w wieku 0.0, 2.2, 4.2, 6.2 8.2 10.4 i 11.2
Gy. Niewidoczne maksimum ma warto$¢ 170 erg/g/s. (Kippenhahn,
Weigert, Weiss “Stellar structure and evolution”)



Zmiany sktadu chemicznego gwiazdy podobnej do Stonca
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Rysunek: Zmiany skfadu chemicznego we wnetrzu gwiazd. Model o masie
5 Mg X=0.7, Z=0.02 w wieku 0.7, 23, 55, 78 i 82 My. (Kippenhahn,
Weigert, Weiss “Stellar structure and evolution”)



Zmiany tempa produkcji energii
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Rysunek: Zmiany tempa produkgcji energii we wnetrzu gwiazd. Model o
masie 5 Mg X=0.7, Z=0.02 w wieku 0.7, 55, 78 i 82 My. Niewidoczne
maksimum ma warto$¢ 2.6 - 10* erg/g/s (Kippenhahn, Weigert, Weiss
“Stellar structure and evolution™)



Zmiany paramertéw powierzchniowych i centralnych
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Rysunek: Tory ewolucyjne gwiazd populacji | na diagramie HR i w
ptaszczyznie log p. — log T¢ (Wojciech Dziembowski “Astrofizyka
teoretyczna 1)



Zmiany parametréw powierzchniowych

» cykl PP - zwiekszenie rozmiaréw i temperatury efektywne;j

» cykl CNO - zwiekszenie rozmiardw i zmniejszenie temperatury
efektywnej



Czas zycia na ciggu gtéwnym
» Ewolucja przebiega w jadrowej skali czasu silnie zaleznej od
masy gwiazdy L ~ M%, o € (3;4.5) w zakresie 0.5-20 Mg,
B feMc?
Thuc = T
f- cze$¢ materii dostepna do reakgcji € - efektywno$é
energetyczna reakgji (e ~ 0.007 dla reakgji termojadrowych
zamiany wodoru w hel)
» Przyblizony czas zycia Storica na ciagu gtéwnym to 10%° lat
» Przyblizony czas zycia na ciggu gtéwnym dla gwiazd o matych

masach
Mini/ Mg | tms (yr)
0.1 4.10%2
0.2 9.10M
0.3 4.101
0.4 2-1011

0.5 1.3-101
0.6 7.5-1010




Czas zycia na ciggu gtéwnym

10.0F -

9.5} -
5 9.0F ****** Pop. Il 1
L2sasl .
>80 -
kS|

75} .

701 .

02 02 06 1.0 1.4
log M
Rysunek: Zalezno$¢ czasu zycia gwiazdy w fazie ciagu gtéwnego w

zalezno$ci od masu i populacji - Popl: X=0.7, Z=0.02; Popll: X=0.756,
Z=0.001 (Wojciech Dziembowski “Astrofizyka teoretyczna I")



Czas zycia na ciggu gtéwnym - duze masy

» Dla gwiazd o duzych masach istotna staje sie utrata masy na
ciggu gtownym Czasy zycia dla gwiazd o duzych masach

(2=0.02).
Mini/Me | tms (yr) | —AM /Mg
30 5.9 - 10° 2.4
40 4.9.10° 5.0
50 4.3.100 8.6
60 4.0-10° 13
80 3.7-10° 25
100 3.5-100 40




Niepewnosci zwigzane z konwekcja
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Rysunek: Tory ewolucyjne gwiazd z M=1.0 i 1.5 Mg (X=0.7, Z=0.02)
dla réznych parametréw drogi mieszania (Wojciech Dziembowski
“Astrofizvka teoretvczna |”")



Niepewnosci zwigzane z konwekcja
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Rysunek: Tory ewolucyjne gwiazd z M=5, 15 i 20 M, (X=0.7, Z=0.02)
liczone standartowo i z mieszaniem poza granica konwektywnego jadra
(Wojciech Dziembowski “Astrofizyka teoretyczna I")



Ewolucja Stonca - schemat budowy wewnetrznej
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Rysunek: rysunek z O.R. Pols “Stellar structure and evolution”



Ewolucja Stonca - ewolucja na diagramie H-R
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Rysunek: rysunek z O.R. Pols “Stellar structure and evolution”



Ewolucja Stonca - ewolucja na diagramie H-R
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Rysunek: rysunek z Sackmann i inni 1993 ApJ, 418, 457)



Ewolucja Stonca - zmiany parametréw wewnetrznych
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Rysunek: rysunek z Sackmann i inni 1993 ApJ, 418, 457)



Ewolucja Stonca - gtéwne etapy ewolucji

Phase Age/ Gy L/LO T /K H’/H'O Mgun /ﬂ'f@
ZAMS 0.00 0.70 5596 0.89 1.000
present 4.58 1.00 5774 1.00 1.000
MS:hottest 7.13 1.26 5820 1.11 1.000
MS:final 10.00 1.84 5751 1.37 1.000
RGB:tip 12.17 2730. 2602 256. 0.668
ZA-He 12.17 53.7 4667 11.2 0.668
AGB:tip 12.30 2090. 3200 149. 0.546
AGB:tip-TP 12.30 4170. 3467 179. 0.544

(note: 1.00 AU = 215 Rg)

Rysunek: Parametry Stofica na jego gtéwnych etapach ewolucji (Schroder
and Smith 2008)



Ewolucja Stonca - gtéwne etapy ewolucji
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protogwiazda

gwiazda ciagu gtéwnego (stabilne reakcje termojadrowe
zamiany wodoru w hel)

wypalenie wodoru w centrum - odejscie od ciggu gtéwnego
palenie wodoru wokét izotermicznego helowego jadra —gataz
czerwonych olbrzyméw

u szczytu gatezi czerwonych olbrzyméw btysk helowy
stabilne palenie helu w jadrze + palenie wodoru w warstwie
wokot jadra

wypalenie helu w jadrze, uformowanie dwéch warstw w
ktérych zachodza reakcje termojadrowe: wewnetrzna zuzywa
hel, zewnetrzna wodér - gwiazda na asymptotycznej gatezi
czerwonych olbrzyméw.

pulsy termiczne w warstwie palenia helu i odrzucenie otoczki
stadium mgtawicy planetarnej (?) i jadro tworzy goracego
biatego karta

stygniecie biatego karta



Ewolucja do zapalenia helu

_\ T | UL ‘ L | 1T ‘ 1T ‘ T \_ 82 C | TT 1T T T 17T TTTT | TT T ‘ T 1T

|20 L
N 8
4112 -

I 78 ]

=] = r B

o [ w 7.5 L ]

L] o |- L r ]

i 74 ]

I 72 F 1

0 F :

_\ L | Ll ‘ | - | L1 pl (] ‘ L1 \_ 7 7\ | Ll | Ll \” Ll | ] ‘ L1 I7

44 42 4 38 36 1 2 3 4 5 6

log T, log p,

Rysunek: Tory ewolucyjne na diagramie H-R i log p. - log T, gwiazd
populacji | od ZAMS do zapalenia helu (W. Dziembowski - Astrofizyka
Teoretyczna 1)



Btysk helowy

>

W czasie ewolucji ku szczytowi gatezi czerwonych olbrzymoéw
helowe jadra gwiazd o masie ponizej 2.3 Mg sa
zdegenerowane.

Przy temperaturze ok 108 K rozpoczynaja sie reakcje spalania
helu w cyklu 3a.. Dla M = 1M masa jadra na poczatku
btysku wynosi 0.47 M, a promien 0.026 R, . Ze wzgledu na
chtodzenie neutrinowe najwieksza temperatura jest dla

M, ~ 0.15M, (zaleznie od masy)

W gazie zdegenerowanym wzrostowi temperatury nie
towarzyszy istotny wzrost ci$nienia, przez co tempo reakgji
termojadrowych bardzo szybko narasta Wzrost mocy
promieniowania z cyklu 3o z 102 do 103 L, trwa ok. 1000 lat,
ale wzrost z 108 do chwilowej jasnoéci ok 10! trwa
kilkanascie dni, jasno$¢ potem szybko spada bo wzrost
temperatury powoduje zniesienie degeneracji i ekspansje jadra
Zwiekszenie rozmiaru jadra powoduje spadek temperatury w
jadrze i zmniejszenie rozmiaréw otoczki. Nastepuje stabilne
palenie helu i palenie wodoru w cienkiej warstwie otaczajace;j



Btysk helowy - zmiany jasnosci
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Rysunek: Btysk helowy dla gwiazdy o masie 0.85 M, (Kippenhahn,
Weigert, Weiss “Stellar structure and evolution”)



Btysk helowy - struktura gwiazdy
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Rysunek: Struktura gwiazdy o masie 1.3 Mg podczas btysku helowego
(Kippenhahn, Weigert, Weiss “Stellar structure and evolution”)



Stabilne palenie helu

» Tempo reakcji jadrowych w helowym jadrze zalezy od masy
jadra (Paczynski 1970)
» Po zapaleniu helu w jadrze Sciezki ewolucyjne gwiazd w

zakresie masy 0.8-2 zbiegaja sie w obszarze nazywanym po
angielsku “red clup”

| 2



Granica Schonberga - Chandrasekhara
Kiedy izotermiczne jadro helowe jest niezdegenerowane istnieje
ograniczenie na jego mase, powyzej ktérej zapada sie ono pod
ciezarem swoim i otoczki. Przyjmijmy, ze jadro ma promien R;,
mase M;, a na jego powierzchni mamy cisnienie P;.
Z réwnania réwnowagi hydrostatycznej otrzymujemy (V = 4/37r3)
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przyjmujac, ze jadro sktada sie z gazu doskonatego i jest
izotermincze mozemy zapisaé
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Granica Schonberga - Chandrasekhara c.d.

Dzielac réwnanie przez V; otrzymujemy cisnienie na granicy jadra i
otoczki

Pi(R)) = —
Obliczmy promien, jaki odpowiada cisnieniu P; = 0

aGuecmy M;
Ro = Ri(Pjmin) = —3,— 7
Dla poréwnania policzmy promien dla ktérego mamy maksymalne
cisnienie P;

dP; -9 KT. M;  4aG M}
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Rl = Rj(Pj,max) =



Granica Schonberga - Chandrasekhara c.d.
Maksymalne ci$nienie Pj max = Pj(R1)
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Przy zatozeniu, ze rozmiary gwiazdy s3 znacznie wigksze niz
rozmiary jadra temperatura T, moze by¢ przyblizona jako
wynikajaca z rozwigzania politropy przy zatozeniu réwnania stanu

gazu doskonatego

Pj max = —
j,max A pempy

,uemH GM

C ~ ﬁ R

Przez co 44
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R*M? it



Granica Schonberga - Chandrasekhara c.d.
Ograniczenie na cisnienine wywierane przez otoczke. Z réwnania
rownowagi hydrostatycznej wynika, ze ci$nienie
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Granica Schonberga - Chandrasekhara c.d.

Przy o = 0.5 warunek Schonberga - Chandrasekhara na stabilno$¢

jadra ma postaé
— <037 —
M e

Dla typowych wartosci pic = 1.34 i e = 0.617 jadro zapadnie sie
gdy

M; > 0.08M

Warunek Schonberga - Chandrasekhara odpowiada za istnienie
przerwy Hertzsprunga na diagramie HR (ewolucja odbywa sie w
termicznej skali czasu).
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