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Ewolucja do zapalenia helu

Rysunek: Tory ewolucyjne na diagramie H-R i log ρc - logTc gwiazd
populacji I od ZAMS do zapalenia helu (W. Dziembowski - Astrofizyka
Teoretyczna I)



Przerwa Hertzsprunga

Rysunek: Względna jasność, obfitość wodoru, gradient promienisty dla
dla gwiazdy o masie 9 M� w trakcie przechodzenia przez przerwę
Hertzsprunga (W. Dziembowski - Astrofizyka Teoretyczna I)



Ewolucja do zapalenia węgla

Rysunek: Tory ewolucyjne gwiazd o różnych metalicznościach liczone do
momentu zapalenia węgla, zaznaczony pas niestabilności pulsacyjnej
cefeid (Wojciech Dziembowski “Astrofizyka teoretyczna I”)



Czas trwania głównych etapów ewolucji

Rysunek: Liczony w milionach lat dla modeli gwiazd o Z=0.008 - wartość
charakterystyczna dla gwiazd LMC. W ostatnich dwóch kolumnach
podany jest względny czas spędzony po czeronej i niebieskiej stronie pasa
niestabilności. (Wojciech Dziembowski “Astrofizyka teoretyczna I”)



Zmiany centralnych parametrów

Rysunek: Tory ewolucyjne gwiazd populacji I na płaszczyżnie
log ρc − logTC (Bohdan Paczyński 1970 AcA 20, 47)



Zmiany ze względu na “overshooting”

Rysunek: Tory ewolucyjne gwiazdy I populacji o masie 9 M� na
diagramie HR dla modelu standardowego i z przechodzeniem elementów
konwektywnych poza formalną granicę Schwarzschilda (Kippenhahn,
Weigert, Weiss “Stellar structure and evolution”)



Ostatnie etapy ewolucji gwiazd małomasywnych
I Gwiazdy pojedyńcze II populacji o masach mniejszych niż 0.8
M� nie zakończyły jeszcze swojej ewolucji na ciągu głównym.

I Gwiazdy II populacji o masie poniżej 0.5 M� nie będą mogły
zapalić helu w swoim wnętrzu i zakończą swoją ewolucję jako
helowe białe karły

I To samo odnosi się do gwiazd I populacji o masie mniejszej
niż ok. 0.8 M�

I W modelach o dużej utracie masy (2 razy większej niż
standardowo przyjmowana) gwiazda I populacji o masie
Słońca może zakończyć ewolucję bez zapalenia helu (jako
helowy biały karzeł).

I W gwiazdach o masach wystarczających do zapalenia helu i
mniejszych niż ok 2.3 M� zachodzi błysk helowy i następnie
stabilne reakcje cyklu 3α (zachodzą również reakcje
termojądrowe spalania wodoru w ciekiej warstwie wokół
helowego jądra).

I Po wyczerpaniu helu w centrum gwiazda przechodzi na
asymptotyczną gałąź czerwonych olbrzymów (AGB) .



Warstwy palenia wodoru i helu
I Warunek stałej masy pomiędzy warstwą palenia wodoru, a

obszarem palenia helu (MH - masa poniżej warstwy palenia
wodoru).
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=
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LHe

qHe
qH

XHe
XH

Przyjmując XH = 0.7, XHe = 1.0, qH/qHe = 10 ,
otrzymujemy LH = 7LHe

I Reakcje termojądrowe zachodzące w cienkich warstwach mają
inne warunki stabilności niż reakcje zachodzące w centrum.

Rysunek: Zaznaczone schematycznie obszary zachodzenia reakcji
termojądrowych w tych dwóch przypadkach (Kippenhahn, Weigert, Weiss
“Stellar structure and evolution”)



Stabilność warstw
I Masa warstwy

m ∼ 4πρr20D

I Ekspansja warstwy przy r0 = const i dm = 0
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Wzrost temperatury przy ekspansji warstwy jest powodem
powstania pulsów termicznych w warstwie palenia helu



Pulsy termiczne na AGB

Rysunek: Pulsy termiczne pod koniec ewolucji gwiazdy o masie
początkowej 2 M� (Paxton i inni 2011 ApJSS, 192,3)



Koniec ewolucji gwiazd o pośrednich masach
I Gwiazdy o pośrednich masach nie zapalają w swoich

wnętrzach węgla (górna granica masy to ok 5 M� dla gwiazd
II populacji i ok 7 M� dla gwiazd I populacji)

I W końcowych etapach ewolucji jasność zależy głównie od
masy jądra, co zostało ujęte we wzorze Paczyńskiego (1970,
AcA 20,47), który obowiązuje w zakresie mas jądra Mc od
0.57 do 1.39 M�

L = 2.83 · 104 + 5.93 · 104
(
Mc
M�
− 1
)
L�

I Charakterystyczne dla tych gwiazd jest istnienie przy końcu
ewolucji pulsów termicznych związanych z warstwą palenia
helu i w ich wyniku odrzucenie otoczki. Charakterystyczny
czas pomiędzy impulsami został określony przez Paczyńskiego
(1975, ApJ 202, 558)

log (
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) ≈ 3.05 + 4.5
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Koniec ewolucji gwiazd o pośrednich masach

I Gwiazdy, które zapaliły hel, a nie były w stanie zapalić węgla
kończą swoją ewolucję jako węglowo-tlenowe białe karły o
masach od 0.5 do ok. 1.1 M�

I Gwiazdy populacji I o masach około 7-9 M� zapalają węgiel w
zdegenerowanym jądrze. Powoduje to “błysk” węglowy.
Proces jest analogiczny do błysku helowego, ale przebiega
gwałtowniej tym niemniej najprawdopodobniej prowadzi do
zniesienia degeneracji jądra.

I W przypadku niekatastrofalnego przebiegu zapalenia węgla
takie gwiazdy kończą ewolucję jako masywne
tlenowo-neonowe białe karły



Ostatnie etapy ewolucji gwiazd masywnych

I Gwiazdy o masach większych niż ok. 10 M� zapalają węgiel w
gazie niezdegenerowanym.

I Wzrost temperatury powoduje możliwość kolejnych reakcji
termojądrowych (syntezy w których biorą udział jądra neonu,
tlenu, krzemu)

I Dokładne modele różnią się pomiędzy sobą, ale ostatnie etapy
ewolucji zachodzą bardzo szybko.



Zmiany gęstości i temperatury centralnej gwiazdy o masie
piczątkowej 25 M�

Rysunek: Porównanie ewolucji gwiazdy o masie początkowej 25 M� na
diagramie log ρc logTc według różnych autorów: (Paxton i inni 2011)



Rysunek: Porównanie czasów ewolucji gwiazd o masie początkowej 20 i
25 M� według różnych autorów: kol. 2 Hirschi i inni 2004; kol. 3
Woosley i inni 2002, kol. 4 Limongi i inni 2000, kol. 5 Paxton i inni 2011
(Paxton i inni 2011 ApJSS, 192,3)



Rysunek: Porównanie struktury gwiazd o masie początkowej 20 i 25 M�
przed wybuchem supernowej według różnych autorów: kol. 1 Hirschi i inni
2004; kol. 3 Woosley i inni 2002, kol. 4 Limongi i inni 2000, kol. 5 Paxton
i inni 2011 (Paxton i inni 2011 ApJSS, 192,3)



Procesy powodujące końcową niestabilność
I Fotodezintegracja jąder atomowych.
I Kreacja par elektron-pozyton

Rysunek: Zaznaczone schematycznie obszary fotodezintegraci jąder
atomowych Fe i niestabilności związanej z kreacją par elektron - pozyton
(Kippenhahn, Weigert, Weiss “Stellar structure and evolution”)



Fotodezintegracja jąder atomowych.

I W wysokich temperaturach (powyżej 109 K) dochodzi do
fotodezintegracji jąder atomowych o niezbyt dużych energiach
wiązania ze względu na obecność fotonów o energiach rzędu
MeV (w ogonie Plancka) Równowagowe stosunki gęstości
jąder nij i ich fragmentów ni , nj możemy określić za pomocą
odpowiednika równania Sahy

ninj
nij
∼ T 3/2 exp (

−Q
kT

),

gdzie Q jest różnicą w energiach wiązania jądra i jego
fragmentów



Fotodezintegracja jąder atomowych.
I Przykładowo fotodezintegracja jąder neonu może byż zapisana

jako
20Ne + γ →16 O + α

a stosunek liczby poszczególnych jąder jako

nOnα
nNe

=
1
h3

(
2πmOmαkT
mNe

)3/2 GOGα
GNe

exp (
−Q
kT

)

gdzie GO Gα GNe - wagi statystyczne a

Q = (mO +mα −mNe)c2

Dodatkowe warunki wiążą liczby cząstek z gęstością i
określają początkowy skład chemiczny

I Musimy rozpatrywać wszystkie reakcje jakie zachodzą w
ośrodku, bo od nich zależy liczba cząstek α (mogą być np.
pochłonięte przez 12C albo 20Ne (analogicznie do sytuacji
częściowej jonizacji w równaniu Sahy)



Fotodezintegracja jąder atomowych.
I Przy temperaturach rzędu 5 · 109 K istotna staje się

fotodezintegracja najbardziej stabilnych jąder, jakimi są jądra
56
26Fe i aby określić stosunek jąder żelaza do cząstek α musimy
zapisać 13 reakcji w postaci

γ + (Z ,A)↔ (Z − 2,A− 4) + α

γ + (Z ,A)↔ (Z ,A− 1) + n

Ze względu na dużą energię wiązania żelaza i helu otrzymamy
określony przez

γ +5626 Fe ↔ 13α + 4n

a stan równowagi określony będzie przez równanie
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Q = (13mα + 4mn −mFe)c2



Fotodezintegracja jąder atomowych.

I Jeżeli przyjmiemy, że liczba protonów do neutronów wynosi
np/nn = 13/15 wtedy nn = 4nα/13 i możemy zapisać(
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I Gęstość (jeżeli pominiemy energie wiązania) może być
zapisana

ρ = (56nFe + 4nα + nn)mu

I Dla danych ρ, T i stosunku nn/nα mamy dwa równania na
nFe i nα. Okazuje się, że istnieje graniza na płaszczyźnie T , ρ
dla której poniżej pewnej temperatury istnieje tylko Fe, a
powyżej tylko He



Rysunek: Zaznaczone obszary istnienia Fe i He (po lewej dla
Z/N=13/15), i Fe, He, p, n (po prawej dla N/Z=1) (Kippenhahn,
Weigert, Weiss “Stellar structure and evolution”)



Kolaps jądra gwiazd masywnych

I Przed zapadnięciem jądro jest częściowo zdegenerowane, ale
stabilne ze wzglądu na zaburzenia cieplne.

I Główny wklad do ciśnienia mają elektrony, ale przy
temperaturze centralnej rzędu 1010K wykładnik adiabaty Γ1
jest bliski 4/3.

I Fotodezintegracja jąder powoduje taki sam efekt jak
częściowa jonizacja, przez co Γ1 może spaść poniżej 4/3

I Efekty relatywistyczne (OTW) powodują, że wartość
krytyczna Γ1 staje się wyższa niż 4/3

I Rozpoczyna się dynamiczna niestabilność jądra
I W przypadku gwiazd o mniejszych masach i istotnej

degeneracji elektronów niestabilność może być związana z
wychwytem elektronów przez ciężkie jądra



Ewolucja parametrów centralnych dla gwiazd o masie 15 i
30 mas Słońca na diagramie ρc - Tc

Rysunek: Paxton i inni, 2015, ApJS 220, 15, Fig. 24



Struktura gwiazdy przed kolapsem

Rysunek: Wewnętrzna struktura gwiazdy o masie początkowej 25 M�
przed kolapsem (Kippenhahn, Weigert, Weiss “Stellar structure and
evolution” za Hirschi i inni 2004)



Wybuch supernowej
I Kolaps centrum gwiazdy jest homologiczny, a powyżej punktu

dźwiękowego odbywa się w dynamicznej skali czasowej
(rosnącej na zewnątrz)

Rysunek: Schematyczny rozkład prędkości w jądrze gwiazdy w czasie
kolapsu (Kippenhahn, Weigert, Weiss “Stellar structure and evolution” za
Müller 1997)



Wybuch supernowej

I Kolaps odbywa się w dynamicznej skali czasowej rzędu 100 ms
I Gdy wnętrze gwiazdy osiągnie gęstość 1014 g/cm3 staje się

prawie nieściśliwe (degeneracja neutronów)
I Energia jaka wydziela się podczas kolapsu jądra jest rzędu

1053 ergów (energia wiązania grawitacyjnego gwiazdy
neutronowej) unoszona jest głównie przez neutrina.

I Energie potrzebna do odrzucenia otoczki jest rzędu 1050

ergów, ale zależy od masy.
I Opadanie materii na sztywne jądro powoduje powstanie fali

uderzeniowej
I Fala uderzeniowa i energia przekazana w wewnętrznej części

przez oddziaływanie neutrin z gęstą materią powodują
odrzucenie warstw zewnętrznych i wybuch supernowej



Powstawanie obiektów zwartych w zależności od MZAMS

Podane wartosci sa orientacyjne
I Białe karły helowe MZAMS < 0.5M�
I Białe karły CO : 0.5M� < MZAMS < 7M�
I Białe karły ONeMg: 7M� < MZAMS < 8M�
I NS (SN z wychwytu elektronów - ECS):

8.0M� < MZAMS < 8.5M�
I NS (zapadnięcie jądra - CCSN): 8.5M� < MZAMS < 20M�
I czarne dziury (fall back): 20M� < MZAMS < 40M�
I czarne dziury (bezpośrednio) MZAMS > 40M�



Kreacja par elektron-pozyton
W dostatecznie wysokich temperaturach zachodzi reakcja

γ ↔ e+ + e−

oznaczmy pozytony i elektrony z par

n+ = n−

elekrony z jonizacji
n−0 =

ρ0
µemH

W sumie elektrony
ne = n−0 + n−

Przy jakiej tempertaturze średnia energia fotonów równa jest masie
pary e+e− (2mec2 = 1.022 MeV)

Ēγ = 2mec2 ≈ 2.7kT

T ≈ 2mec2

2.7kT
≈ 4.4 · 109K

Daje to nam logT ≈ 9.6



Kreacja par elektron-pozyton c.d.
I W rzeczywistości proces kreacji par staje się istotny już przy

temperaturach 109K, kiedy znacząca część fotonów w
rozkładzie Plancka ma energie Eγ > 2mec2

I Wypiszemy wyrażenia na gęstość elektronów i pozytonów.
Musimy włączyć masę spoczynkową cząstek do ich energii ,
potencjału chemicznego i parametru degeneracji.

E ′ = E +mec2

mec2

√1 +

(
p
mec

)2
− 1


Potencjał chemiczny

λi ≡
∂U
∂Ni

∣∣∣∣
S ,V

λ′i ≡
∂U
∂Ni

∣∣∣∣
S ,V

+mec2



Kreacja par elektron-pozyton c.d.

I Parametr degeneracji

ψ′ = ψ +
mec2

kT
=

λ

kT
+
mec2

kT

I Ze względu na potencjał chemiczny fotonów równy 0 możemy
zapisać, że w przypadku równowagi

ψ′+ = −ψ′−

czyli
ψ′− = ψ +mec2/kT

ψ′+ = −ψ −mec2/kT



Kreacja par elektron-pozyton c.d.
I Gęstość elektronów

ne =
8π
h3

∫ ∞
0

p2dp

exp (−ψ′− + E ′

kT ) + 1

ne =
8π
h3

∫ ∞
0

p2dp

exp (−ψ + E
kT ) + 1

I Gęstość pozytonów

n+ =
8π
h3

∫ ∞
0

p2dp

exp (−ψ′+ + E ′

kT ) + 1

n+ =
8π
h3

∫ ∞
0

p2dp

exp (ψ + E+2mec2
kT ) + 1

I Gęstość elektronów pochodzących z jonizacji

n−0 =
8π
h3

(∫ ∞
0

p2dp

exp (−ψ + E
kT ) + 1

−
∫ ∞
0

p2dp

exp (ψ + E+2mec2
kT ) + 1

)



Kreacja par elektron-pozyton c.d.

I Z poprzedniego równania można wyznaczyć ψ(ρ0,T ) a
następnie ne i n+

I Dla b. wysokich temperatur mamy ne >> n
−
0 → ne ≈ n+ →

ψ ≈ −mec2/kT , ψ < 0, dla T →∞ ψ → 0
I Widać, że w wyniku kreacji par nie istnieje niezdegenerowany

relatywistyczny gaz elektronowy. Dla wysokich T gaz
elektronowy jest zawsze częściowo zdegenerowany (ψ ∼ 0)

I Jeżeli gęstość jest na tyle duża, że degeneracja jest silna
(ψ >> 1) wówczas kreacja par jest nieistotna (brak wolnych
“celek” w przestrzeni fazowej) i mamy wtedy ne ≈ n−0

I Dla ne ≈ n+ ( ψ ≈ −mec2/kT ) mamy

ne ≈ n+ ≈
8π
h3

∫ ∞
0

p2dp

exp (E+mec
2

kT ) + 1



Kreacja par elektron-pozyton - przypadek
nierelatywistyczny

I Przyjmujemy, że mec2/kT >> 1 (T << 5.93 · 109K )
I E = p2/(2me)

ne ≈ n+ ≈
8π
h3

exp (
−mec2

kT
)

∫ ∞
0

p2dp

exp ( p2
2mekT

)

ne ≈ n+ ≈
2(2πmekT )3/2

h3
exp (

−mec2

kT
)

W tym przybliżeniu

ne ≈ n+ ≈ 1.527 · 1029T 3/29 exp (
−5.93
T9

)

Dla T9 = 1 ne = n+ ≈ 4 · 1026

(dla porównania n−0 = 4 · 1026 gdy ρ0 ≈ 670 i µe = 1)



Kreacja par elektron-pozyton - przypadek
ultrarelatywistyczny

I Przyjmujemy, że mec2/kT << 1 (T >> 5.93 · 109K )
I E = pc

ne ≈ n+ ≈
8π
h3

∫ ∞
0

p2dp
exp ( pckT ) + 1

I Podstawienie pc/kT = u, czyli p = kT
c u

ne = n+ =
8π
h3

(
kT
c

)3 ∫ ∞
0

u2du
eu + 1

I Wartość całki ∫ ∞
0

u2du
eu + 1

= ζ(n + 1)n!
2n − 1

2n

I Gęstość elektronów i pozytonów ( ζ(3) ≈ 1.202)

ne = n+ =
8πm3ec

3

h3

(
kT
mec2

)3 9
2
ζ(3) ≈ 1.51 · 1028T 39



Ciśnienie par w przypadku ultrarelatywistycznym
I Suma ciśnienia par elektron pozyton

P−/+ = Pe + P+ =
c
3

∫ ∞
0
pdn−/+ =

16πc
h3

∫ ∞
0

p3dp
exp ( pckT ) + 1

P−/+ =
16πc
3h3

(
kT
c

)4 ∫ ∞
0

u3du
eu + 1

=
28π
h3

ζ(4)

(
kT
c

)3
kT

I Stosunek ciśnienia par do ciśnienia gazu doskonałego
(ζ(4) = π4

90 ; różnica wynika z częściowej degeneracji gazu par
elektron - pozyton)

P−/+
n−/+

=
7
6
ζ(4)

ζ(3)
≈ 1.05

I Stosunek ciśnienia par do ciśnienia promieniowania

P−/+ =
28
90
π5k4

c3h3
T 4 =

7
12
aT 4 =

7
4
Prad



Ewolucja parametrów centralnych dla gwiazd na diagramie
ρc - Tc

Rysunek: Paxton i inni, 2013, ApJS 208, 4, Fig 44.



Zalezność masa promień dla białych karłów i gwiazd
neutronowych

Rysunek: 38.3 Kippenhahn, Weigert,
Weiss “Stellar Structure and
Evolution”

I Rys. 38.3 z Kippenhahn,
Weigert, Weiss “Stellar
Structure and Evolution”

I Linią ciągłą zanaczone są
konfiguracje stabilne, a linią
przerywaną niestabilne

I Wzdłuż krzywych podane są
gęstości centralne dla
niektórych modeli



Gwiazdy neutronowe

I Końcowy produkt ewolucji gwiazd o masach początkowych
powyżej 8-9 M�.

I Nie jest pewna górna granica początkowej masy gwiazd które
w wyniku zapadnięcia się jądra i wybuchu supernowej dadzą
gwiazdę neutronową (ok. 20 M�, ale zależy to od
metaliczności i związanej z nią utraty masy)

I Odkrycie gwiazd neutronowych 1967 - Jocelyn Bell (Burnell) -
pulsar PSR B1919+21

I Najbliższą znaną gwiazdą neutronową jest prawdopodobnie
RX J1856.5-3754 - odl ok. 140 pc.

I Pulsar o najmniejszym okresie rotacji - PSR J1748-2446ad
(ν = 716 Hz)

I Najmasywniejsze znane gwiazdy neutronowe PSR J1614–2230
(1.97± 0.04 M�) i PSR J0348+043 (2.01± 0.04 M�). Ich
towarzyszami są małomasywne białe karły.



Budowa wewnętrzna gwiazdy neutronowej o masie 1.4 M�

Rysunek: ( 38.4 Kippenhahn, Weigert, Weiss “Stellar Structure and
Evolution” za D. Pines 1980, Journal de Physique 41



Czarne dziury

I Kolaps obiektów o masach powyżej 20 M� nie będzie już
równoważony przez ciśnienie.

I Według OTW powstaje osobliwość, którą otacza horyzont
(czarna dziura). i która grawitacyjne oddziałuje na otoczenie.

I Pierwsze rozwiązanie dla metryki czasoprzestrzeni wokół
nierotującej czarnej dziury (zależnej tylko od masy) - Karl
Schwarzschild 1916.

I Promień horyzontu nierotującej czarnej dziury to

rs =
2GM
c2
≈ 3
M
M�
km



Rotujące czarne dziury

I Pierwsze rozwiązanie dla metryki czasoprzestrzeni wokół
rotującej czarnej dziury (zależnej od masy i momentu pędu) -
Roy P. Kerr 1963 - istnienie horyzontu i ergosfery (obszaru
czasoprzestrzeni współrotującego z czarną dziurą.

I Rozmiar zewnętrznego horyzontu rotującej czarnej dziury -
a = J/(Mc)

rh =
1
2

(rs +
√
r2s − 4a2)

I Rozmiar zewnętrznej ergosfery

rE =
1
2

(rs +
√
r2s − 4a2 cos2 θ)



Stygnięcie białych karłów - model uproszczony
I Najprostszy model zakłada całkowicie zdegenerowane

izotermiczne jądro i otoczkę złożoną z gazu doskonałego.
Zakładamy skokowe przejście w równaniu stanu pomiędzy
jądrem, a otoczką dla

ρ3 = 0.5T 3/27

I Zakładamy, że otoczka jest zjonizowana, nie zawiera wodoru i
helu i µ = 2. Równanie stanu gazu doskonałego w tej sytuacji
możemy zapisać jako

P18 = 0.416 · ρ3T7
I Zakładamy zależność współczynnika nieprzezroczystości

κ = κ0ρ
qT−s

I Zakładamy, że otoczka jest w równowadze promienistej

∇rad ≡
d lnT
d lnP

=
3κLP

16πGacMT 4



Stygnięcie białych karłów - model uproszczony
I Przyjmujemy na powierzchni P = 0 i T = 0, dzięki czemu

otrzymujemy

T s+q+4 =
3κLP

16πGacM

(
k

2mH

)q s + q + 4
q + 1

Pq+1

I Dla nieprzezroczystości dla przejść swobodno-związanych
korzystamy ze wzoru Kramersa κ = 4 · 1025ρT−3.5 i
otzymujemy zależność politropową

P18 = 6.4 · 10−3T 4.257

√
L�
L
M
M�

i z równania stanu gazu doskonałego (µ=2)

ρ3 = 1.53 · 10−2T 3.257

√
L�
L
M
M�



Stygnięcie białych karłów - model uproszczony
I Z warunku na granicę pomiędzy izotermicznym

zdegenerowanym jądrem a promienistą otoczką otrzymujemy
zależność pomiędzy temperaturą wnętrza a jasnością b.k.

T7,b = 7.32
(
L
L�

M�
M

)2/7
I Przyjmujemy, że biały karzeł świeci na koszt energii

wewnętrznej jonów znajdujących się w jądrze b.k.
(przyjmiemy, że µj=12)

U =
3k

2µjmH
T ·M =

k
8mH
T ·M

I Jasność białego karła (skorzystamy z przybliżonej zależności
R/R� = 0.0127(M/M�)−1/3)

log
L
L�

= 4 log
Tef
Tef ,�

− 2
3

log
M
M�
− 3.8



Stygnięcie białych karłów - model uproszczony
I Charakterystyczna skala czasowa chłodzenia

τc ≡
U
L

Dla naszego modelu

τc = 1.25 · 107
(
L�
L
M
M�

)5/7
lat

lub

τc = 7.9 · 1010
(
M
M�

)25/21( Tef
Tef ,�

)−20/7
lat

I Gdy podstawimy zależność pomiędzy temperaturą centralną a
jasnością do równania

dU
dt

= −L

otrzymamy zależność jasności od czasu

L ∼ t−7/5


