
Ćwiczenia z mechaniki nieba, 24 i 31 marca 2020

Wyznaczanie elementow orbitalnych planetoidy na podstawie trzech obsewacji

Za obecną wartość nachylania płaszczyzny równikowej Ziemi do płaszczyzny ekliptyki proszę
przyjąć ε = 23o26′12′′

Rozwiązanie
Obliczamy kosinusy kierunowe dla trzech obserwacji

li = l(ti) = cos(αi)cos(δi)

mi = m(ti) = sin(αi)cos(δi)

ni = n(ti) = sin(δi)

l1 = 0.7229874 l2 = 0.7153749 l3 = 0.6981152
m1 =−0.6318031 m2 =−0.6416559 m3 =−0.6648234
n1 = 0.2794887 n2 = 0.2766159 n3 = 0.2657912

Przedziały czasu:
τ1 = 10 dni = 0.1720210
τ2 = 15 dni = 0.2580315
τ3 = 5 dni = 0.0860105
W zerowym przybliżeniu, dla pierwszej iteracji przyjmujemy
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Układ równań na odległości planetoidy od Ziemi ∆1 ∆2 i ∆3 ma postać:

0.4819917∆1−0.7153750∆2 +0.2327051∆3 = 0.0029319
−0.4212021∆1 +0.6416559∆2−0.2216078∆3 =−0.0059899
0.1863258∆1−0.2766159∆2 +0.0885971∆3 =−0.0025998

Rozwiązaniami są:
∆1 = 2.716659 ∆2 = 2.673947 ∆3 = 2.6058711

(x1,y1,z1) = (+1.964111,−1.716394,+0.759276)
(x2,y2,z2) = (+1.912875,−1.715754,+0.739656)
(x3,y3,z3) = (+1.819198,−1.732444,+0.692618)

(ξ1,η1,ζ1) = (+2.270839,−2.605684,+0.373726)
(ξ2,η2,ζ2) = (+2.299069,−2.578400,+0.365657)
(ξ3,η3,ζ3) = (+2.355529,−2.523831,+0.349517)

r1 = 3.476488 r2 = 3.473841 r3 = 3.4699287

Szanowni Państwo.
Z uporem godnym lepszej sprawy na ćwiczeniach korzystałem ze wzoru z wykładu w którym

była pomyłka. We wzorach na Ai, w mianowniku w wyrazie zawierającym τ3 w mianowniku jest 6r3,
a ne 6r2. Właściwe wzory na pola trójkątów Ai są następujące (w wykładzie zostało to poprawione).

Możemy skorzystać ze wzorów wyprowadzonych na wykładzie
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które dają przybliżone wartości a1 i a3:
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Na korektę wartości a1 i a3 większy wpływ ma wyraz, w którego mianowniku jest 6r3
2, przykła-

dowo
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Możemy zobaczyć jak zmienią się przedziały czasów τi w związku ze zmianą odległości planeto-
idy od Ziemi

τ1 = t3− t2 +(∆2−∆3)/c = 0.1720210+6.76 ·10−6

τ3 = t2− t1 +(∆1−∆2)/c = 0.0860105+4.24 ·10−6

W programie początkowo nie uwzględniałem tej zmiany, ale poprawka nie przyniosła istotnych
różnic w ostatecznym wyniku. Gdy podstawimy poprawione wartości τi otrzymame:
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Poprawione wartości ai:
a1 = 0.6667626

a3 = 0.3334141

Otrzymujemy układ równań z poprawionymi współczynnikami:

+0.4820610∆1−0.7153750∆2 +0.2327615∆3 = 0.00285918
−0.4212627∆1 +0.6416559∆2−0.2216615∆3 =−0.00584074
+0.1863526∆1−0.2766159∆2 +0.0886185∆3 =−0.00253510

i otrzymujemy zmienione odległości i współrzędne geocentryczne

∆1 = 2.648790 ∆2 = 2.607508 ∆3 = 2.540482

(x1,y1,z1) = (1.915042,−1.673513,0.740307)
(x2,y2,z2) = (1.865345,−1.673122,0.721278)
(x3,y3,z3) = (1.773550,−1.688972,0.675238)

Ze współrzędnych geocentrycznych, otrzymujemy heliocentryczne, a następnie r1 = 3.410290, r2 =
3.408835, r3 = 3.405590. Możemy następnie obliczyć poprawione wartości a1 i a3 ...

Po siedmiu iteracjach, kiedy zmiany w odległości r2 pomiędzy kolejnymi iteracjami były mniejsze
od 10−7 otrzymane zostały następujące wielkości:

• odległości geocentryczne:

∆1 = 2.644634 ∆2 = 2.603436 ∆3 = 2.536471

• współrzędne geocentryczne:

(x1,y1,z1) = (1.912037,−1.670888,0.739145)
(x2,y2,z2) = (1.862433,−1.670510,0.720152)
(x3,y3,z3) = (1.770749,−1.686305,0.674172)
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• współrzędne heliocentryczne:

(ξ1,η1,ζ1) = (+2.218766,−2.560178,+0.353596)
(ξ2,η2,ζ2) = (+2.248628,−2.533156,+0.346152)
(ξ3,η3,ζ3) = (+2.307080,−2.477693,+0.331071)

• odległości heliocentryczne:

r1 = 3.406239 r2 = 3.404853 r3 = 3.401645

Te współrzędne będziemy wykorzystywali do wyznaczenia elementów orbitalnych.
Najpierw wyznaczymy parametr orbity. Mozemy łatwo policzyć pole powierchni trójkątów, któ-

rych wierzchołkami są Słońce i dwa położenia planetoidy, np w momentach t1 i t3.
Stosunek pola powierzchni sektora zakreślonego przez promień wodzący planetoidy w ruchu wo-

kół Słońca, do pola trójkąta dany jest przez poprawki, które otrzymaliśmy na powierchnie trójkątów
A1, A2, A3. Na przykład
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Czyli (kąt 2 f2 jest to kąt pomiędzy wektorami ~r1 = (ξ1,η1,ζ1), a ~r3 = (ξ3,η3,ζ3))
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Czyli p= 2.62640.
Mając parametr orbity, odległości r1 i r3 i kąt 2 f2 (anomalia prawdziwa ϑ3 = ϑ1 +2 f2) możemy

zapisać
ecosϑ1 =

p
r1
−1

cos2 f2 =
ξ1ξ3 +η1η3 +ζ1ζ3

r1r3

e · cos(ϑ1 +2 f2) = e(cosϑ1 cos2 f2− sinϑ1 sin2 f2) =
p
r3
−1

Z tego otrzymujemy
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podnoszac równania na ecosϑ1 i esinϑ1 do kwadratu i dodając stronami otrzymujemy wartość
mimośrodu e.
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Mając wartości parametru orbity pi mimośrodu e otrzymujemy wielką półoś orbity

a =
p

1− e2 = 2.77347
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Z tych samych równań otrzymujemy wzory na cosϑ1 i sinϑ1
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i otrzymujemy ϑ1 = 186.167o.
Z zależności pomiędzy anomalią prawdziwą i mimośrodową otrzymujemy
E1 = 3.277600rad = 187.792o.
Z równania Keplera M1 = 3.30882rad = 189.582o

Okres orbitalny P = a3/2 = 4.61886 = 1687.072dni
Przejście przez peryhelium t0 = t1−888.438 dni
Następne przejście przez peryhelium będzie dla t = t1 +798.634 dni
Mamy już trzy elementy orbitalne. Nastepne możemy otrzymać albo korzystając ze wzorów na

elementy macierzy podane na wykładzie:

Px =
ξ3y1−ξ1y3

y1x3− y3x1
=

ξ1r3 sinϑ3−ξ3r1 sinϑ1

r1r3 sin2 f2
=−0.5664286

Qx =
ξ3x1−ξ1x3

y3x1− y1x3
=

ξ3r1 cosϑ1−ξ1r3 cosϑ3

r1r3 sin2 f2
=−0.821287

Py =
η1r3 sinϑ3−η3r1 sinϑ1

r1r3 sin2 f2
= 0.8149861

Qy =
η3r1 cosϑ1−η1r3 cosϑ3

r1r3 sin2 f2
=−0.5459580

Pz =
ζ1r3 sinϑ3−ζ3r1 sinϑ1

r1r3 sin2 f2
=−0.1223054

Qz =
ζ3r1 cosϑ1−ζ1r3 cosϑ3

r1r3 sin2 f2
= 0.1655824

Ze wzorów umożliwiających nam policzenie odległości peryhelium od węzła wstępującego (ε =
23o26′12′′) :

sinωsin i = Pz cosε−Py sinε =−0.4363639

cosωsin i = Qz cosε−Qy sinε = 0.3690687

Otrzymujemy
ω = 310.224o

Ze wzorów na sinusy i cosinusy węzła wstępującego:

sinΩ = (Py cosω−Qy sinω)
1

cosε
= 0.1192870

cosΩ = (Px cosω−Qx sinω) =−0.9928607

Ω = 173.149o
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Ze wzoru na cosinys nachylenia płaszczyzny orbity do płaszczyzny ekliptyki

cos i =−(Px sinω+Qx cosω)
1

sinΩ
= 0.8205836

otrzymujemy
i = 34.857o

Elamenty orbitalne Ω, ω i i możemy otrzymać również metodą stosowaną na ćwiczeniach, gdy
obliczaliśmy elementy orbitalne na podstawie danych położenia i prędkości ciała.

Możemy policzyć składowe momentu pędu najpierw w układzie równikowym równonocnym,

(Jξ,Jη,Jζ) = (0.1104835,0.314786,1.585908),

a następnie przetransformować je do układu ekliptycznego

(JX ,JY ,JZ) = (0.110484,0.919648,1.329828)

i zastosować wzory z ćwiczeń.
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