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Prawa Keplera

Na podstawie obserwacji zgromadzonych przez Tycho Brahe
(głównie obserwacji Marsa) Johannes Kepler sformułował i
opublikował w latach 1609 (Astronomia nova) i 1619 (Harmonices
Mundi) trzy prawa opisujące ruch planet.

1. Planety poruszają się po orbitach eliptycznych. Słońce
znajduje się w jednym z ognisk elipsy.

2. Prędkość polowa planety w jej ruchu orbitalnym względem
Słońca jest stała.

3. stosunek trzeciej potęgi rozmiarów wielkiej półosi orbity do
kwadratu okresu orbitalnego jest stały.



Równanie biegunowe krzywej stożkowej

r =
p

(1 + e cosϕ)

I r - odległość od jednego z ognisk (centrum siły)
I ϕ - anomalia prawdziwa
I p - parametr p = a(1− e2)
I e - mimośród
I równanie krzywej stożkowej we współrzędnych biegunowych

(e < 1 - elipsa, e = 1 - parabola, e > 1 - hiperbola)



Zagadnienie dwóch ciał

Rysunek: Dwa ciała przyciągające się siłą grawitacji



Równania ruchu dwóch punktowych mas oddziałujących
grawitacyjnie

Mamy dwa równania ruchu i aby je rozwiązać będziemy
potrzebować 12 stałych całkowania.

m1
d2~x1
dt2

=
Gm1m2
r3

~r12

m2
d2~x2
dt2

= −Gm1m2
r3

~r12



Równania ruchu środka masy

m1
d2~x1
dt2

=
Gm1m2
r3

~r12

m2
d2~x2
dt2

= −Gm1m2
r3

~r12

Dodajemy równania stronami

m1
d2~x1
dt2

+m2
d2~x2
dt2

= 0

Ponieważ mamy ruch ciał o stałej masie, to

d2

dt2
(m1~x1 +m2~x2) = 0



Równanie ruchu środka masy c.d.

Wektor położenia środka masy jest określony jako

~R =
m1~x1 +m2~x2
m1 +m2

tak więc mamy

(m1 +m2) ·
d2~R
dt2

= 0

Środek masy porusza się ruchem jednostajnym prostoliniowym.

Mamy sześć pierwszych stałych całkowania (~R(t) = ~R0 + ~̇R0 · t)



Równanie ruchu względnego

Równania obustronnie dzielimy przez m1 (pierwsze) i m2 (drugie),
a następnie odejmujemy równanie pierwsze od drugiego:

d2~x1
dt2

=
Gm2
r3

~r12

d2~x2
dt2

= −Gm1
r3

~r12

d2

dt2
(~x2 − ~x1) = −G (m2 +m1)

r3
~r12

(~x2 − ~x1) = ~R +~r2 − ~R −~r1
Otrzymujemy równanie ruchu ciała drugiego względem pierwszego
Od tego momentu wektor położenia ciała drugiego względem
pierwszego będziemy oznaczać jako ~r = ~r12 = ~r2 − ~r1



Równanie ruchu względnego c.d.

d2

dt2
(~x2 − ~x1) =

d2

dt2
(~r2 −~r1) =

d2~r
dt2

= −G (m2 +m1)
r3

~r

Gdy pomnożymy stronami przez m1m2/(m1 +m2) otrzymamy
odpowiednik równania ruchu punktu materialnego wokół
nieruchomego centrum siły

µ
d2~r
dt2

= −G (m1m2)
r3

~r = − γ
r3
~r



Zasada zachowania momentu pędu i drugie prawo Keplera

Równanie ruchu względnego mnożymy wektorowo przez ~r i
otrzymujemy

~r × µd
2~r
dt2

= 0.

Korzystając z różniczkowania funkcji złożonej możemy zapisać, że

~r × µd
2~r
dt2

=
d
dt

(~r × µ~̇r)− ~̇r × µ~̇r =
d
dt

(~r × µ~̇r)

Tak więc mamy zasadę zachowania momentu pędu, czyli stałą
wartość prędkości polowej (II prawo Keplera)

d
dt

(~r × µ~̇r) = 0

czyli
(~r × µ~̇r) = const



Aby sprawdzić czemu równa jest ta stała zapiszemy moment pędu
układu względem środka masy

~Js = m1~r1 × ~̇r1 +m2~r2 × ~̇r2

Pamiętając, że
~r1 = − m2

m1 +m2
~r

~r2 =
m1

m1 +m2
~r

otrzymujemy

~Js = µ~r × ~̇r



Zasada zachowania energii
Równanie ruchu względnego pomnożymy teraz skalarnie przez ~̇r i
otrzymamy

µ~̇r · d
2~r
dt2

= −~̇r · γ
r3
~r = ~̇r · ∇

(γ
r

)
a następnie

d
dt

(µ
1
2

(~̇r2)− γ

r
) = 0

czyli

(µ
1
2

(~̇r2)− γ

r
) = const

Jeżeli zapiszemy równanie na energię w układzie środka masy

1
2

(m1~̇r21 +m2~̇r22 )− γ

r
= Es

i skorzystamy z zależności na ~r1 i ~r2 otrzymamy

(µ
1
2

(~̇r2)− γ

r
) = Es

Od tej pory energię względem środka masy Es będziemy zapisywać
jako E



Tor ruchu względnego

Ruch względny odbywa się w ustalonej płaszczyźnie i możemy go
zapisać we współrzędnych biegunowych

J = µr2ϕ̇

E =
1
2
µr2ϕ̇2 +

1
2
µṙ2 − γ

r

podstawiając ϕ̇ = J/(µr2) i ṙ = dr
dϕ ϕ̇ = dr

dϕJ/(µr2) otrzymamy
równanie toru

1
2
J2

µr2
+

1
2

(
dr
dϕ

)2 J2
µr4
− γ

r
= E

i następnie ..



Tor ruchu względnego c. d.

J2

2µ

[(
dr
dϕ

)2 1
r4

+
1
r2

]
− γ

r
= E .

Podstawiamy r = 1/w

dr
dϕ

= − 1
w2
dw
dϕ

i otrzymujemy

J2

2µ

[(
dw
dϕ

)2
+ w2

]
− γw = E

i następnie

dw
dϕ

= ±
(
−w2 +

2µγ
J2
w +

2µE
J2

)1/2



Tor ruchu względnego c.d.

dw
dϕ

= ±
(
−w2 +

2µγ
J2
w +

2µE
J2

)1/2
Podstawienie w = x + µγ/J2 prowadzi do równania

dx[
µ2γ2

J4

(
1 + 2EJ2

µγ2

)
− x2

]1/2 = ±dϕ

następnie x = y µγJ2 (1 + 2EJ2
µγ2

)1/2 daje już

dy
(1− y2)1/2

= ±ϕ



Tor ruchu względnego c. d. - krzywe stożkowe,
I prawo Keplera

Podstawienie y = cosα daje rozwiązanie toru, które po powrocie
do zmiennej r ma postać

µγ

J2
+
µγ

J2
(1 +

2EJ2

µγ2
)1/2 cos(ϕ− ϕ0) =

1
r

i

r =

J2
µγ

1 + (1 + 2EJ2
µγ2

)1/2cos(ϕ− ϕ0)
=

p
1 + e cos(ϕ− ϕ0)

co jest równaniem krzywej stożkowej o własnościach określonych
przez znak E (jeżeli J2 > 0).
I E < 0 ruch względny odbywa się po torze eliptycznym.

Stanowi to treść pierwszego prawa Keplera.
I E = 0 równaniem toru jest parabola
I E > 0 równaniem toru jest hiperbola.



Stałe p i e

W równaniu toru
r =

p
1 + e cos(ϕ− ϕ0)

p - parametr orbity

p =
J2

µγ

e - mimośród orbity

e = (1 +
2EJ2

µγ2
)1/2



Zależność pomiędzy energią a wielką półosią elipsy a

W przypadku E < 0 i ruchu po elipsie największa i najmniejsza
odległość wynosi odpowiednio Q = p/(1− e) i q = p/(1 + e), w
związku z tym wielka półoś elipsy

a =
1
2

(q + Q) =
1
2
p(

1
1− e

+
1

1 + e
) =

p
1− e2

co po podstawieniu daje

a = − γ

2E
= −Gm1m2

2E

i zależność energii od wielkiej półosi elipsy

E = −Gm1m2
2a



Prędkość orbitalna ruchu względnego

Korzystając z równania zachowania energii możemy podać wartość
prędkości orbitalnej dla ruchu po orbicie eliptycznej v = |~̇r |

1
2
µv2 − Gm1m2

r
= −Gm1m2

2a

otrzymamy

v = (G (m1 +m2))1/2
(

2
r
− 1
a

)1/2
.

Korzystamy ze stałości prędkości polowej, która w okresie równym
okresowi orbitalnemu P powinna dać pole elipsy S = πab

1
2
r2ϕ̇ · P = πab

Podstawimy wartość prędkości polowej dla najmniejszej odległości
pomiędzy ciałami (wtedy nie mamy składowej radialnej prędkości)



III prawo Keplera

v = r ϕ̇ = (G (m1 +m2))1/2
(

2
a(1− e)

− 1
a

)1/2

v = (G (m1 +m2))1/2
(

1
a

1 + e
1− e

)1/2
Iloczyn predkosci polowej i okresu orbitalnego da nam pole elipsy
(πab = πa2

√
1− e2)

1
2
r2ϕ̇·P =

1
2

(G (m1 +m2))1/2
(

1
a

1 + e
1− e

)1/2
·a(1−e)·P = πa2

√
1− e2

otrzymujemy (uogólnione) III prawo Keplera

a3

P2
=
G (m1 +m2)

4π2



Zależność położenia od czasu.

E =
1
2
J2

µr2
+

1
2
µṙ2 − γ

r

ṙ2 =
γ

µ

(
2E
γ

+
2
r
− p
r2

)
=
γ

µ

(
−1
a

+
2
r
− a(1− e2)

r2

)
dr
dt

=

(
γ

µ

)1/2(
−1
a

+
2
r
− a(1− e2)

r2

)1/2
1
e

rdr(
a
(

1−
(
a−r
ae

)2))1/2 =

(
γ

µ

)1/2
dt



Zależność położenia od czasu c.d.
Podstawiamy ξ = (a− r)/(ae) czyli r = a(1− eξ) i dr = −aedξ i
otrzymujemy(

γ

µ

)1/2
a−3/2dt =

eξdξ
(1− ξ2)1/2

− dξ
(1− ξ2)1/2

Mamy następujące rozwiązania:
Elipsa a > 0, e < 1, ξ = cosE(

γ

µ

)1/2
a−3/2(t − t0) = arccos(ξ)− e(1− ξ2)1/2 = E − e sinE

Hiperbola a < 0, e > 1, ξ = cosh (F )(
γ

µ

)1/2
|a|−3/2(t−t0) = −arccosh(ξ)+e(ξ2−1)1/2 = e sinhF−F

Dla paraboli (
γ

µ

)1/2
(t − t0) =

1
3

(r + p)(2r − p)1/2



Ruch po paraboli
Dla ruchu po paraboli najwygodniej jest skorzystać z faktu, że
energia całkowita w układzie środka masy równa jest zero i
korzystamy z zachowania momentu pędu.
Pamiętamy, że p=2q (q - odległość w perycentrum)

µr2ϑ̇ =
√
pµγ

r =
p

1 + cos(ϑ)
=

q

cos2(ϑ2 )

q2sec4(
ϑ

2
)dϑ =

√
2q
γ

µ
dt(

1 + tg2(
ϑ

2
)

)
d(tg(

ϑ

2
)) =

√
γ

√
2µq3/2

dt

jeżeli jako moment t0 określimy przejście przez perycentrum to
otrzymamy równanie Bakera

tg(
ϑ

2
) +

1
3
tg3(

ϑ

2
) =

√
γ

√
2µq3/2

(t − t0)



Określenie anomalii mimośrodowej E i anomalii
prawdziwej ϕ dla elipsy

Rysunek: Określenie anomalii mimośrodowej E i anomalii prawdziwej ϕ



Związek anomalii mimośrodowej E i anomalii prawdziwej
ϑ dla elipsy

r cosϑ = a(cosE − e)

r sinϑ = b sinE = a
(
1− e2

)1/2
sinE

Pozwala to na otrzymanie następujących zależności:

cosϑ =
cosE − e

1− e cosE

sinϑ =

√
1− e2 sinE

1− e cosE

tg(
ϑ

2
) =

√
1 + e
1− e

tg(
E
2

)



Związek hiperbolicznej anomalii mimośrodowej F i
anomalii prawdziwej ϑ dla hiperboli

Z definicji hiperbolicznej anomalii mimośrodowej i równania
hiperboli we współrzędnych biegunowych możemy otrzymać:

cosϑ =
e − coshF
e coshF − 1

sinϑ =

√
e2 − 1 sinhF
e coshF − 1

tg(
ϑ

2
) =

√
e + 1
e − 1

tgh (
F
2

)



Stałe ruchu względnego w zagadnieniu dwóch ciał

Mamy sześć stałych ruchu dla ruchu względnego dwóch ciał:
W rozwiązaniu z poprzedniego wykładu były to

I Energia liczona w układzie środka masy
I trzy składowe momentu pędu liczone względem środka masy
I kąt ϑ0, który przyjęliśmy 0 dla najmniejszej odległości

pomiędzy obu ciałami.
I wyróżniony moment czasu w którym ϑ = ϑ0



Elementy orbity eliptycznej

Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie
płaszczyzny orbity do płaszczyzny ekliptyki, długość węzła wstępującego,
odległość perycentrum od węzła wstępującego, moment przejścia przez
perycentrum



Elementy orbity eliptycznej c. d.
Ze względów praktycznych związanych z obserwacjami za sześć
stałych ruchu względnego w zagadnieniu dwóch ciał najczęściej
przyjmujemy:

I a - wielka półoś orbity
I e - mimośród orbity
I i - nachylenie orbity do wyróżnionej płaszczyzny (dla orbit

wokółsłonecznych jest to płaszczyzna ekliptyki)
I Ω - długość węzła wstępujęcego (dla orbit wokółsłonecznych

odległość węzła wstępującego od punktu Barana)
I ω - odległość perycentrum od węzła wstępującego
I t0 - moment przejścia przez perycentrum

Czasem użyteczne jest korzystanie z długości perycentrum
π = ω + Ω.
W związku z tym oprócz anomalii prawdziwej θ możemy się
spotkać z argumentem szerokości u = θ + ω i prawdziwą długością
orbitalną
l = θ + ω + Ω = θ + π


