
Wykład 5 - Całki ruchu zagadnienia n ciał,
funkcja perturbacyjna dla ruchu keplerowskiego,

sfery działania planet.
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Układ n ciał przyciągających się siłami grawitacji

Mamy n ciał przyciągających się siłami grawitacji.
Masy ciał oznaczamy mi .
Współrzędne ciał w układzie inercjalnym oznaczamy ξi , ηi , ζi .
Równania ruchu:

mi ξ̈i = −Gmi
n∑

j=1,j 6=i
mj
ξi − ξj
r3ij

mi η̈i = −Gmi
n∑

j=1,j 6=i
mj
ηi − ηj
r3ij

mi ζ̈i = −Gmi
n∑

j=1,j 6=i
mj
ζi − ζj
r3ij



Stałe ruchu układu n ciał

Mamy 3n równań drugiego stopnia dla 3n zmiennych - do ich
rozwiązania potrzebnych jest 6 n stałych ruchu.
Kolejno sumując n - równań otrzymujemy:

n∑
i=1

mi ξ̈i = 0

n∑
i=1

mi η̈i = 0

n∑
i=1

mi ζ̈i = 0

a całkując po czasie∑n
i=1mi ξ̇i = a1,

∑n
i=1mi η̇i = a2,

∑n
i=1mi ζ̇i = a3



Ruch środka masu układu n - ciał

n∑
i=1

miξi = a1t + b1

n∑
i=1

miηi = a2t + b2

n∑
i=1

miζi = a3t + b3



Ruch środka masu układu n - ciał

Jeżeli masa układu jest równa M =
∑n
i=1mi to

ξ0 =
1
M

n∑
i=1

miξi

η0 =
1
M

n∑
i=1

miηi

ζ0 =
1
M

n∑
i=1

miζi

I Barycentrum układu n punktów oddziałujących grawitacyjnie
porusza się ruchem jednostajnym prostoliniowym.

I Równania w układzie środka masy mają taką samą postać jak
w dowolnym układzie inercjalnym.



Potencjał wzajemnego oddziaływania

U =
1
2
G
n∑
i=1

n∑
j=1,j 6=i

mimj
rij

∂U
∂ξi

= Gmi
∂

∂ξi

n∑
j=1,j 6=i

mj
rij

= −Gmi
n∑

j=1,j 6=i
mj
ξi − ξj
r3ij

Możemy podobnie zapisać ∂U/∂ηi i ∂U/∂ζi , co pozwoli nam
zapisać równania ruchu w postaci:

mi ξ̈i = ∂U
∂ξi
, mi η̈i = ∂U

∂ηi
, mi ζ̈i = ∂U

∂ζi



Całki pól

Zapisujemy równania ruchu w układzie środka masy i mnożymy
równania na ζ̈i przez ηi , a równania na η̈i przez ζi i odejmujemy je
od siebie stronami.

mi (ηi ζ̈i − ζi η̈i ) = −Gmi
n∑
j=1

mj
ηi (ζi − ζj)− ζi (ηi − ηj)

r3ij

mi (ηi ζ̈i − ζi η̈i ) = Gmi
n∑
j=1

mj
ηiζj − ζiηj
r3ij

Zapisujemy analogiczne równania dla par współrzędnych ζi , ξi i ξi ,
ηi . Przy sumowaniu po i sumy po prawych stronach równań są
równe “0” (wyrazy sum znoszą się parami bowiem każdej parze
wartości i ,j odpowiada para j ,i .



Całki pól c. d.

Otrzymujemy trzy równania:

n∑
i=1

mi (ηi ζ̈i − ζi η̈i ) = 0

n∑
i=1

mi (ζi ξ̈i − ξi ζ̈i ) = 0

n∑
i=1

mi (ξi η̈i − ηi ξ̈i ) = 0

Całkując je otrzymujemy trzy całki zwane całkami pól:



Całki pól c. d.

n∑
i=1

mi (ηi ζ̇i − ζi η̇i ) = c1

n∑
i=1

mi (ζi ξ̇i − ξi ζ̇i ) = c2

n∑
i=1

mi (ξi η̇i − ηi ξ̇i ) = c3

Lewe strony równań przedstawiają ogólne momenty pędów układu
n punktów materialnych względem osi współrzędnych. Wyrażenia
w nawiasach są rzutami prędkości polowej poszczególnych punktów
materialnych na trzy fundamentalne płaszczyzny układu
współrzędnych ξ, η, ζ.



Całka energii.
Mnożymy równania

mi ξ̈i = ∂U
∂ξi
, mi η̈i = ∂U

∂ηi
, mi ζ̈i = ∂U

∂ζi

odowiednio przez ξ̇i , η̇i , ζ̇i , dodajemy do siebie stronami i
sumujemy po “i” aby otrzymać

n∑
i=1

mi (ξ̇i ξ̈i + η̇i η̈i + ζ̇i ζ̈i ) =
n∑
i=1

(
∂U
∂ξi

ξ̇i +
∂U
∂ηi

η̇i +
∂U
∂ζi

ζ̇i

)
Całkując te równanie po czasie (prawa strona jest równa dU/dt)
otrzymujemy:

1
2

n∑
i=1

mi (ξ̇i
2

+ η̇i
2 + ζ̇i

2
) = U + h

h - stała całkowania, U - energia potencjalna względem środka
masy T = 1

2

∑n
i=1mi (ξ̇i

2
+ η̇i

2 + ζ̇i
2
) - energia kinetyczna.



Stałe równań ruchu w zagadnieniu n ciał

I W zagadnieniu n ciał znamy 10 stałych ruchu (potrzebujemy
6n).

I Zagadnienie ruchu trzech ciał umiemy całkować tylko w
szczególnych przypadkach.

I Heinrich Bruns w 1887 r. udowodnił, że we współrzędnych
prostokątnych pokazane przez nas 10 całek jest jedynymi
niezależnymi algebraiczymi całkami ruchu ogólnego
zagadnienia trzech ciał.

I Pomimo, że zagadnienia n ciał (a nawet trzech ciał) nie
możemy rozwiązać w sposób ścisły to ruchy ciał w Układzie
Słonecznym potrafimy przewidzieć w stosunkowo niedługich
interwałach czasu posługując się metodami numerycznymi,
metodami analitycznymi teorii perturbacji lub rozwijaniem na
szeregi.



Równania ruchu względnego n ciał

Zakładamy, że ciało n posiada największą masę i względem niego
będziemy rozpatrywać ruch pozostałych ciał.

xi = ξi − ξn yi = ηi − ηn zi = ζi − ζn

Z równań ruchu otrzymamy:

mi ξ̈i = −k2mi
n−1∑
j=1,j 6=i

mj
ξi − ξj
r3ij

− k2mimn
ξi − ξn
r3in

i analogiczne wyrażenia na mi η̈i i mi ζ̈i



Równania ruchu względnego n ciał c. d.

ẍi + ξ̈n = −k2
n−1∑
j=1,j 6=i

mj
xi − xj
r3ij

− k2mn
xi
r3in

ÿi + η̈n = −k2
n−1∑
j=1,j 6=i

mj
yi − yj
r3ij

− k2mn
yi
r3in

z̈i + ζ̈n = −k2
n−1∑
j=1,j 6=i

mj
zi − zj
r3ij

− k2mn
zi
r3in

natomiast:

ξ̈n = k2
∑n−1
j=1 mj

xj
r3jn

η̈n = k2
∑n−1
j=1 mj

yj
r3jn

ζ̈n = k2
∑n−1
j=1 mj

zj
r3jn



Równania ruchu względnego n ciał c. d.

Podstawiając i wydzielając w prawych stronach równań ruchu
wyraz w którym j = i , otrzymujemy (po prawej stronie sumujemy
po j 6= i , xn = 0 ) :

ẍi + k2(mn +mi )
xi
r3in

= −k2
n−1∑
j=1

mj
xi − xj
r3ij

− k2
n−1∑
j=1

mj
xj
r3jn

ÿi + k2(mn +mi )
yi
r3in

= −k2
n−1∑
j=1

mj
yi − yj
r3ij

− k2
n−1∑
j=1

mj
yj
r3jn

z̈i + k2(mn +mi )
zi
r3in

= −k2
n−1∑
j=1

mj
zi − zj
r3ij

− k2
n−1∑
j=1

mj
zj
r3jn



Funkcja perturbacyjna i równania ruchu względnego

Wprowadzając funkcję nazywaną funkcją perturbacyjną

Rij = k2
n−1∑
j=1,j 6=i

mj

(
1
rij
−
xixj + yiyj + zizj

r3jn

)
możemy równania ruchu względnego zapisać w postaci:

ẍi + k2(mn +mi )
xi
r3in

=
∂Rij
∂xi

ÿi + k2(mn +mi )
yi
r3in

=
∂Rij
∂yi

z̈i + k2(mn +mi )
zi
r3in

=
∂Rij
∂zi

(i=1,2, .. , n-1, i 6= j)



Funkcja perturbacyjna i równania ruchu względnego

ẍi =
∂

∂xi

(
k2(mn +mi )
rin

+ Rij

)
ÿi =

∂

∂yi

(
k2(mn +mi )
rin

+ Rij

)
z̈i =

∂

∂zi

(
k2(mn +mi )
rin

+ Rij

)
Jeżeli masy wszystkich punktów materialnych mj (oprócz mn i mi
są równe zeru, to Rij = 0 i równania opisują ruch keplerowski.
Wszystkie odchylenia od ruchu keplerowskiego wynikają z
obecności Rij .



Perturbacje w Układzie Słonecznym

I Masa Słońca jest około 700 razy większa od sumy mas
wszystkich planet

I Najmasywniejsza planeta, Jowisz ma masę ok 1000 razy
mniejszą niż Słońce ( ale 318 razy większą niż Ziemia).

I Siła przyciągania grawitacyjnego Ziemi przez Jowisza nie
przekracza 1/17000 siły przyciągania grawitacyjnego Słońca.

I W przypadku Marsa nie przekracza 1/6000, a w przypadku
Saturna 1/250

I Orbity planet będą opisywane jako perturbowane orbity
keplerowskie



Orbita oskulacyjna i orbita pośrednia

I Orbita oskulacyjna - orbita keplerowska na której w danej
chwili czasu ciało posiada takie samo położenie i prędkość jak
na orbicie rzeczywistej.

I Orbita pośrednia - orbita keplerowska na której w danej chwili
czasu ciało posiada takie samo położenie jak na orbicie
prawdziwej, natomiast ruch rzeczywisty i ruch keplerowski
mają różne prędkości



Grawitacyjne sfery planet

Co mamy zrobić w sytuacji, gdy obliczamy orbity księżyców
względem planet, lub orbitę planetoidy, która zbliża się do planety.
Kiedy powinniśmy traktować ruch ciała względem planety za
perturbowany przez Słońce a kiedy jako ruch orbitalny względem
Słońca z perturbowany przez planetę?



Grawitacyjne sfery planet - przypadek poglądowy

Rozważmy Słońce (masa = 1), planetę o masie m i punkt
materialny P o pomijalnej masie.
r - odległość punktu P od Słońca
r1 - odległość planety od Słońca
∆ - odległość punktu P od planety

∆2 = (x − x1)2 + (y − y1)2 + (z − z1)2

Równania ruchu punktu P możemy zapisać jako

ẍ + k2
x
r3

= k2m(
x1 − x

∆3
− x1
r31

)

analogicznie dla ÿ i z̈



Grawitacyjne sfery planet c.d.

Równania niezakłóconego ruchu heliocentrycznego planety mają
postać:

ẍ1 + k2
x1
r31

= 0

i analogicznie dla ÿ1 i z̈1
Przyjmujemy środek planety za początek nowego prostokątnego
układu współrzędnych ξ, η, ζ o osiach równoległych do układu x ,
y , z .
ξ = x − x1 η = y − y1 ζ = z − z1
Równania ruchu punktu P względem planety będą miały postać
(odejmujemy od równania ruchu punktu P względem Słońca
równanie ruchu planety względem Słońca):

ξ̈ + k2m
ξ

∆3
= k2(

x1
r31
− x
r3

)

i analogicznie dla η i ζ



Grawitacyjne sfery planet c.d.

Wprowadzimy następujące wielkości:
R – przyspieszenie pochodzące od Słońca w układzie związanym ze
Słońcem.
F – przyspieszenie pochodzące od planety w układzie związanym
ze Słońcem.
R1 – przyspieszenie pochodzące od planety w układzie związanym
z planetą.
F1 – przyspieszenie pochodzące od Słońca w układzie związanym z
planetą.

R =
k2

r2

R1 =
k2m
∆2



F = k2m

[(
x1 − x

∆3
− x1
r31

)2
+

(
y1 − y

∆3
− y1
r31

)2
+

(
z1 − z

∆3
− z1
r31

)2]1/2

F1 = k2
[(
x1
r31
− x
r3

)2
+

(
y1
r31
− y
r3

)2
+

(
z1
r31
− z
r3

)2]1/2
Przyjmiemy założenie, że sfera działania planety będzie
ograniczona powierzchnią na której

F
R

=
F1
R1



Grawitacyjne sfery planet c.d.

Pamiętając, że

(x1 − x)2

∆6
+

(y1 − y)2

∆6
+

(z1 − z)2

∆6
=

1
∆4

i
x21 + y21 + z21
r61

=
1
r41

otrzymujemy:

F = k2m
[

1
∆4

+
1
r41

+ 2
(x1ξ + y1η + z1ζ)

∆3r31

]1/2
i

F1 = k2
[

1
r4

+
1
r41
− 2

(x1x + y1y + z1z)
r3r31

]1/2



Grawitacyjne sfery planet c.d.

Gdy wprowadzimy kąt φ o wierzchołku w planecie z ramionami
skierowanymi na Słonce i punkt P, oraz wprowadzimy parametr
u = ∆/r1 będziemy mogli zapisać

cosφ = −x1ξ + y1η + z1ζ
r1∆

oraz

x1x+y1y+z1z = x1(x1+ξ)+y1(y1+η)+z1(z1+ζ) = r21 (1−u cosφ)

r2 = (x1 + ξ)2 + (y1 + η)2 + (z1 + ζ)2 = r21 (1− 2u cosφ+ u2)



Grawitacyjne sfery planet c.d.

F =
k2m
∆2

(
1− 2u2 cosφ+ u4

)1/2
i

F1 =
k2u2

[
1 + (1− 2u cosφ+ u2)2 − 2U

] 1
2

∆2(1− 2u cosφ+ u2)

U = (1− u cosφ)(1− 2u cosφ+ u2)1/2.

Biorąc pod uwagę, że w naszym zagadnieniu wielkość u powinna
być mała możemy zapisać:

R =
k2

r21

F = R1 =
k2m
∆2

F1 =
k2∆
r31

(1 + 3 cos2 φ)1/2



Grawitacyjne sfery planet c.d.

Wewnątrz sfery działania o “promieniu” ∆1 F/R > F1/R1

∆1 = r1

[
m2

(1 + 3 cos2 φ)1/2

]1/5
Rozmiary sfery działania można porównać z rozmiarami sfery
przyciągania - obszaru w którym siła grawitacyjnego przyciągania
planety będzie większa niż siła przyciągania grawitacyjnego Słońca
(∆2 = r1m1/2). Dla Ziemi rozmiary sfery działania wynoszą:
∆1,min = 805 tys km, ∆1,max = 925 tys km.
Natomiast rozmiary sfery przyciągania:
∆2,min = 256 tys km, ∆2,max = 265 tys km.
Widzimy, że Księżyc znajduje się poza sferą przyciągania Ziemi,
natomiast orbita Księżyca znajduje z bardzo dużym marginesem
wewnątrz sfery działania Ziemi.



Grawitacyjne “sfery” planet
Rozmiary “sfer” działania planet: a - wielka półoś orbity w
jednostkach astronomicznych,
m - masa planety w masach Słońca
∆1,min - minimalny rozmiar “sfery” działania liczony dla odległości
od Słońca = a
rsat - rozmiar orbity najodleglejszego księżyca.

Planeta a m ∆1,min rsat
Merkury 0.3871 1.69 · 10−7 6.54 · 10−4 -
Wenus 0.7233 2.45 · 10−6 0.00358 -
Ziemia 1.0000 3.00 · 10−6 0.00538 0.00256
Mars 1.5236 3.23 · 10−7 0.00336 1.57 · 10−4

Jowisz 5.2033 9.55 · 10−4 0.28055 0.16711
Saturn 9.537 2.86 · 10−4 0.31738 0.17847
Uran 19.19 4.37 · 10−5 0.30125 0.13970

Neptun 30.07 5.15 · 10−5 0.50429 0.32945

Widzimy, że księżyce planet znajdują się wewnątrz sfery ich
działania.



Prędkości kosmiczne

I Misje orbitalne - konieczność osiągnięcia I prędkości
kosmicznej

VI =

√
GMz
Rz

= 7.81km/s

I Podróż do innych planet Układu Słonecznego - konieczność
przekroczenia II prędkości kosmicznej

VII =

√
2GMz
Rz

= 11.19km/s

I Minimalna prędkość nadana ciału na Ziemi, aby mógł wylecieć
z Układu Słonecznego - III prędkość kosmiczna.

VIII =

√
(
√

2− 1)2
GM�
r0

+ V 2IIz = 16.65km/s



Jak obliczamy wartość III prędkości kosmicznej?

Aby prędkość opuszczenia układu Słonecznego była najmniejsza
musi być ono wystrzelone zgodnie z ruchem orbitalnym Ziemi, aby
wektory prędkości ciała względem Ziemi i prędkości Ziemi
względem Słońca były równoległe.
Ciało musi opuścić sferę działania Ziemi i na orbicie
wokółsłonecznej mieć wystarczającą prędkość aby opuścić układ
Słoneczny.
Ta prędkość dla orbity Ziemi to

Vesc =
√

2 · GM�AU =
√

2 · V0 = 42.122km/s

Różnica prędkości pomiędzy tą prędkością, a prędkością orbitalną
Ziemi wynosi

√
2− 1V0 = 12.337 km/s.



Jak obliczamy wartość III prędkości kosmicznej? c.d.

Obiekt wystrzelony w kosmos musi po wyjściu ze sfery dzielania
Ziemi mieć względem niej prędkość 12.337 km/s.
Energia kinetyczna, którą nadajemy obiektowi musi być równa
sumie energii potrzebnej do opuszczenia sfery działania Ziemi (w
przybliżeniu II prędkość kosmiczna) i energii kinetycznej ciała
względem Ziemi potrzebnej do opuszczenia układu Słonecznego

EK (III ) =
1
2
mv2III =

1
2
m(
√

2− 1)2V 20 +
1
2
mV 2IIZ

Czyli

VIII =

√
(
√

2− 1)2V 20 + V 2IIz = 16.65km/s



Równanie rakietowe
W układzie związanym z rakietą o masie m
∆m - masa materii wyrzuconej z rakiety
Ie = Ve - impuls właściwy, prędkość materii wyrzuconej z rakiety w
układzie rakiety
∆V - zmiana prędkości rakiety

∆m · Ve = (m −∆m) ·∆V
Z dokładnością do wyrazów pierwszego rzędu w ∆ i uwzględniając
że masa materii wyrzuconej jest to masa tracona przez rakietę
możemy zapisać równanie w którym wystąpią pochodne d zamiast
zmian ∆ i zmiennymi będzie

m
dV
dt

= −dm
dt
Ve

Równanie można rozwiązywać ze wzlędu na masę lub na zmianę
prędkości tu np. przy stałym przyspieszeniu a

m(t) = m0 exp− at
Ve

= m0 exp−∆V /Ve

lub na zmianę prędkości rakiety

∆V = Ve ln
m0
m

Impuls właściwy Ie = Ve możemy również podawać w sekundach
gdy zapiszemy Ve = g cdotIe


