Wyktad 7 - Perturbacje ruchu keplerowskiego

6 i 20 kwietnia 2020



Funkcja Lagrange’a i funkcja Hamiltona

» Funkcja Lagrange’a jest suma energii kinetycznej i
potencjalnej punktéw materialnych uktadu.

L=Ex+ U(q,-, t)
> Roéwnania Lagrange'a drugiego rodzaju
d (oL oL _ 0
dt \ 94, dqr
» Funkcja Hamiltona (g, - uogdlnione potozenia, p, -
uogdlnione pedy

H=Y pg —L
r=1

» Réwnania Hamiltona




Przeksztatcenia kanoniczne

Mamy 2n zmiennych kanonicznych: g, i p, (r =1,2,..,n). i 2n
zmiennych Q, i P,. Przejscie od ukfadu zmiennych q,, p, do
uktadu zmiennych Q,, P, wyrazone jest przez 2n réwnan

qr = qr(Q17 Q27"7 Qna P17 P27"7Pn7t)
Pr = pr(Qla QZ;"7 Qna P17 P27"7Pn7t)

Jezeli w rozpatrywanym zakresie zmiennych Q, P, t jakobian
powyzszego przeksztatcenia nie jest réwny 0

D(qlaCI27--7qu17P2a-->Pn) ;,é 0
D(Qla Q2a ooy Qna ’Dla P2a ooy Pn)

to w tym zakresie istnieje przeksztatcenie odwrotne

Qr — Qr(qla q2,..,4n, P1, P2, --Pn; t)
PI’ = Pr(q1, az,--,4qn, P1, P2, --Pn; t)



Przeksztatcenia kanoniczne c.d.

Dla zmiennych g, i p, mamy spetnione réwnania Hamiltona

s OH o 0H
r=op, Pr="0q>

a ze zmiennymi @, i P, zwigzana jest nowa funkcja Hamiltona
K(Q,P,t), taka ze

- OK(Q,P, r IK(Q,P,
Qr — (8%, t) Pr [ (a%r t)

Przeksztatcenia spetniajace te warunki nazywamy
przeksztatceniami kanonicznymi.



Funkcja tworzaca

Z zasady najmniejszego dziatania przy warunkach brzegowych
0q,(t1) =01 dq,(t2) = 0 i przyjmujac, ze S jest funkcja czasu i
pofozenia otrzymujemy:

6/ dS—a/ (0.0t =5 |3 prc, — Hld.p, ) =0

=1

a przy warunkach brzegowych §Q,(t1) =01 dQ,(t2) =0
5/ dS—é/ (q,9,t dt—5/ (ZPdQ, QPt))d 0
Odejmujemy réwnania i otrzymujemy

/ Z(prdqr — P,dQ,) — (H—K)dt =0

=1



Réwnanie jest spetnione jezeli
n

> (prdg, — Prd@,) — [H(g, p,t) — K(Q, P, t)]dt = d®(q, Q, 1)

r=1

Wtedy z warunkéw brzegowych dq,(t1) =01 dq,(t2) =0 i
0Q(t1) =01 dQ.(t2) =0, wynika, ze

2 do 2 d5P o L) o
5/ —dt= /dd op[2 _Z(a 5q, + 80,5@’> 2=0

r=1

Jezeli pochodna funkgji
do  9d /0P . I .
m—&+§ﬂmww@@

podstawimy do réwnania to otrzymamy warunki:

a®(q,Q,t) __ 09(q,Q.t)
Pr="5q, Pr=-=3a

0%(q,Q, t)



Réwnanie Hamiltona-Jacobiego
Jezeli funkcja K(Q, P,t) =0, to

- OK(Q,P,t) __ 5 . OK(Q,Pt)
Qr: (apr )—07 P, =— (BQr )—0

i w zwigzku z tym
Q, = const = [3,, P, = const = «,

Funkcje tworzaca badziemy wtedy oznaczaé W(q, Q, t) i bedzie
spetniaé rownanie

IW(q, @, 1)
H(q,p,t)—i—T:O
poniewaz
oW
pi = q;
otrzymamy réwnanie nazywane rownaniem Hamiltona - Jacobiego
8\/\/(;;(?,1“) + H(q1, 92, --qr, g?l/, g?l/, o Z‘c/y‘r/’ t)=0



Metoda wariacji statych

Rozwazmy uktad punktéw materialnych o funkcji Hamiltona (H; -
hamiltonian zaktécajacy.

H = HO(CIL q2,..,4n, P1, P2, -+, Pn, t)+Hl(ql7 q2,..,4n, P1, P2, -+, Pn, t)
Ruch zaktécony uktadu opisany jest przez 2n réwnan

kanonicznych (i=1, .., n)

: oH : . oH
9 = op; : Pi="0q

Zatézmy, ze znamy ogdlne rozwigzanie uktadu 2n réwnan
kanonicznych (i=1, .., n)

.. OHp : .. _ OHp
9= op ' Pi = "3,




Metoda wariacji statych c.d.

ai = CIi(OélaOQ, "704n7515B27 "aﬁm t)
pPi = p,‘(Oél,OéQ, "704n7/81aﬁ27 "7/8n7 t)

gdzie «j, B; sa dowolnymi, niezaleznymi statymi catkowania.
Rozwiazania na q; i p; s dane przez zwiazki:

ow aw
Pi = 3g;> 6":87%

w ktérych funkcja W = W(aq1, 92, .., Gn, 01, 2, .., p, t) jest catka
zupetna réwnania Hamiltona - Jacobiego

M+H( ow ow  ow
old1, 92, --,qn, aql’ aq27“a aqn

o ,t)=0



Metoda wariacji statych c.d.

Rozwigzanie uktadu réwnan kanonicznych o funkcji Hamiltona

H = Hy + H1 mozemy otrzymaé w podobnej postaci, ale «;, §;
beda nowymi zmiennymi zaleznymi od czasu. Chcemy znalez¢
warunki jakie maja spetnia¢ «;(t), Bi(t), aby funkcje g(«;, 5i, t),
p(aj, Bi, t) spetniaty réwnania kanoniczne dla ruchu zaktéconego.

09 ~~(0qi .  0qi , O(Ho + H
q+z<q CI>_(0+1)

ot 90, O T a5, 7" op;

.
Oa,

ap,- . 8/3,‘ . % 5 N 8(H0 + Hl)
ot +Z< art aﬂ,5f> oa;



Metoda wariacji statych c.d.

Poniewaz %‘1" = %7’1‘3@ oraz %F;f _ _%/;?
n
dqi . 9q;i ;\ OH
; (aa,“r * 85,5f> = o
- 8,0,‘ . 8Pi 5 . OH;
Z <8ar art 86r /8r> N 3q,-

r=1
Mnozac pierwsze réwnania przez dp;/0c;, a drugie przez

—0q;/0cj, a nastepnie sumujac po i otrzymujemy:
opi 9qi \ n n

- 60:, 804]) O[r + Zi:l Zr:]_ (
_ Z" OH, Op; 9H; 9qi
T 4~i=1 \ 9p; Oa; g O

9q; Op;

9q; Op;

S S (e

op; 9q;

9Br 9o — 9B Do

)

Br



Metoda wariacji statych c.d.
Mnozac pierwsze réwnania przez Op;/df3;, a drugie przez
—0q;/0pB;, a nastepnie sumujac po i otrzymujemy:
n n 9q; Op; 9pi 94i \ - n n 9q; Op; Opi 9q; \ A
D1 D=1 (aa, a8; ~ da, aﬁj> ar+3201 2 (66, a8, — 9B, ag,-) Br
_ n OH, Op; OHy 0q;
= 2im1 (3p,'1 o5 t oa; 86,-)

Hamiltonian Hp, bedacy funkcja zmiennych g i p mozemy przy
pomocy zaleznosci qf(ala a2, .., Qp, 617 527 [3) Bna t) [
pi = pi(a1, oz, .., an, B1, B2, .., Bn, t) wyrazi jako funkcje a S,
przez co prawe strony réwnah mozemy wyrazi¢ jako:

Z”: OHy Opi  OHL 9\ _ Oty
: 8p,‘ 80éj 8q,~ Gaj N (9041'

i=1

Zn: <5H1 op; n OH, 3qi> _OH,
Oopi 0B;  0q; 9B; 9B,

i=1



Metoda wariacji statych c.d.

Réwnania mozemy zapisaé¢ za pomoca nawiaséw Lagrange'a

> lowsoglaie + [ asldy = O

i=1 i=1

Z[a,, BJ]OLr + Z[Bra ﬁj]ﬁr - 71

i=1
Réwnania te sa stuszne dla kazdego uktadu statych «;, 3;, ale
przyjmuja szczegblnie prostg postal jezeli cvj B; sa zmiennymi
kanonicznymi. Mozemy to pokazac przeksztatcajac funkcje
W(q,a,t) w funkcje W'(a, 5, t)

n

oW OW(q,a,t) ZGW 2q9;i Bt 8q,
0q; 8aJ J 8

=1

6aj Oa;j



Metoda wariacji statych c.d.

W podobny sposéb mozna otrzymacé

ow’ . 9q;
08, _;p’aﬁj
Zatem
R~ 9qi Opi  9pi Oqi\ _ O . Oqi 0 g
levrs A1 = Z_; <8a, 98, o, aﬁj> ~ 95 ;”’aa, Do, ;p’aﬁj
i nastepnie

o (oW o [ow
[Oénﬁj] 8B ( _5r> - 804, (a,ﬁj >

[ar, B;] = 0 dla r # j oraz o, Bi] = =1 lub [B;, ;] = 1 dla
r =j = i. Z wiasnosci nawiaséw Lagrange'a [a;, ;] =0 i
[Br, Bj] = 0 dla wszystkich j,r =1,2,..,n




Réwnania w postaci kanonicznej




Réwnania ruchu perturbowanego

Réwnania ruchu perturbowanego mozemy zapisaé w postaci:

. Xi 8R
Xj + K273 = a7
in !
;i OR
i K2£ _or
TRy
i OR
..i KQi _or
i 3 0z

in

(i=1,2, .., n-1, i #j), gdzie K? = k(1 + m;) i

~1
R:kzzn (L XXty iz
- J rij r3
j=1 Jn




Réwnania ruchu w zmiennych kanonicznych

_ OH o, — OH — OH
X = 9% Y =73y Z= "3z

_ _0OH v _OH 5 _ _0OH
X = "xr y= dy’ Z= "5

Dla ruchu niezaburzonego:

— OHg — 9Hy , — OHo
X = "% Y =" 2=z
~ ___ OHp . 9Hp 5 OHy
X = ox ! y= ady ! zZ= 0z

gdzie H=Hy+ Hi=Hy— R



State kanoniczne rozwigzania keplerowskiego

Rozwigzanie réwnania ruchu niezaburzonego metoda Hamiltona -
Jacobiego daje nam 6 statych kanonicznych oy, as, as, 51, B2, Bs.
Rozwigzania maja formalna postac:

x = fi(a1, a2, a3, 81, B2, B3,t) X = gi(ou, a2, a3, 1, B2, B3, t)
y = h(a1,a,03,51, 82, B3,t) ¥y = go(au, az, 3,51, B2, B3, t)
z=f(on, 0,03, 81,82, B3,t)  z=gz(a1,a2,03,51, 62,55, t)
Zmienne kanoniczne s3 nastepujace:

alz—g—j ar =Ky/a(l—e?) az=Ky/a(l—e?)cosi

Br=—tg = (FE) /2 fo=m—-Q=w [f3=0




Réwnania na pochodne czasowe statych kanonicznych catkowania
réwnania zaburzonego maja postacé:

: OR
Qi = 3p;» BI = Ba,

Aby je otrzymaé przypominamy zwiazki miedzy wspdtrzednymi
planety, a jej elementami orbitalnymi:

x = r(cos ucos ) — sin usinQcos )
y = r(cos usin Q + sin u cos Q2 cos i)
z=rsinusini

E—esinE=nt+e—m

u=9+w, r=a(l—ecosE), tg5= tg 5



Podane zaleznosci pomigdzy elementami kanonicznymi a
elementami orbitalnymi i elementami orbitalnymi a wspdétrzednymi
kartezjanskimi umozliwiaja za pomoca réwnan opisujacych zmiany
elementéw kanonicznych zapisa¢ réwnania na zmiany elementéw
orbitalnych przez co mozemy otrzymac:

x = ¢1(a,e,i,Q,m e, t),
y = ¢2(a,e,i,Q,m e t),
z=¢3(a, e, i,Q,m e, t),
x=11(a,e,i,Q,7,¢€t),
y =1n(a, e, i,Q, 7, ¢ t),
z=13(a,e,i,Q,m,e,t),



Orbita oskulacyjna

Niech w chwili tp elementy orbitalne przyjma wartosci ag, ep, fo,
Qo, mo, €9 wtedy wspdtrzedne prostokatne i ich pochodne
wyrazamy w zaleznosci od zmiennej t przez:

xo = ¢1(ao, o, fo, Qo, 0, €0, t),
¥o = ¢2(ao, o, io, Qo, o, €0, t),
20 = ¢3(a0, €o, io, o, o, €0, t),
Xo = 1(ao, €0, io, o, 7o, €0, t),
Yo = ¥2(ao, €o, io, 0, 0, €0, t),

20 =13

Jezeli poczawszy od chwili tg R = 0, to elementy ag, ey, ip, Qo, 70,
€0 Maja state wartosci i réwnania te przedstawiaja ruch keplerowski
fikcyjnej planety o masie m. Poniewaz w chwili ty elementy a, e, i,
Q, 7w, € przyjmuja wartosci ag, eg, fo, 0, T, € to

X=X, Y =Y0,Z=20, X =X0, ¥y = Y0, Z= 2o

—~~

40, €0, i07 QOa 770, €0, t)



Orbita

>

oskulacyjna c.d.

W nieskonczenie matym iterwale czasu orbita rzeczywista
planety P bedzie styczna do keplerowskiej orbity planety
fikcyjnej i w przedziale czasu dt oba ciata przebiegna
jednakowy tuk.

W réznych chwilach czasu dla orbity ciata P otrzymamy dwie
r6zne orbity keplerowskie.

Szeé¢ statych ag, ey, io, 0, 7o, €0 Wyrazaja w chwili ty
(nazywanej epoka oskulacji) odpowiednia orbite oskulacyjna
Orbita ciata P jest obwiednia nieskonczenie wielu orbit
oskulacyjnych. Za pomoca wariacji elementéw mozemy
poréwnywacd elementy oskulacyjne w epoce t z elementami
oskulacyjnymi w epoce tp.

Réznice da = a— ag, de = e — ey, 6i =i — Iy,

00 =Q —Qq,0m =7 — 7w, e = € — €9 nazywamy
perturbacjami elementéw.

Ruch po orbicie rzeczywistej jest ruchem perturbowanym na
skutek dziatania sity perturbacyjnej o sktadowych OR/0x,
OR/0y, OR/0z



Réwnania wariacyjne dla elementéw orbitalnych

Réwnania na zmiane elementéw kanonicznych chcemy zamienié na
réwnania na zmiane elementéw orbitalnych. Elementy a, e, i, €, m,
Q oznaczymy przez ci, ¢, .., C6. Poniewaz s3 funkcjg elementéw
kanonicznych, to otrzymamy zalezno$¢ (j = 1,2, ..,6):

. 8 Jcj

=

3
. dc; OR  Ocj OR
9 ; <5Oéi opi 0B; 3Oéi>
3 6
. folel OR dck Jg; OR Oc
<= ; o kz_; dcx 0B; Z 9B; Z < Dy Dy

_iRZ ¢ D D¢ dci
B k=1 dc 80[, 861 8/81 8O‘i




Réwnania wariacyjne dla elementéw orbitalnych c. d.

Otrzymujemy sze$¢ (j = 1,2, ..,6) rownan zawierajacych nawiasy

Poissona:
6
. OR
Cj = Z(CJ’ Ck)a
Ck
k=1
Zaleznos$¢ elementéw orbity od elementéw kanonicznych jest
nastepujaca:
2
c1:a:—2% C4—e—62+63+ L(—2a7)3/?
o=e= 14—20“0“2 G =7=/p2+03

C3:i:arccosa2 6 =02= 04



Wartosci nawiaséw Poissona dla elementéw orbitalnych

Otrzymujemy tylko 6 réznych od zera nawiaséw Poissona

(e =sing): )
(37 6) = E

cos¢p ¢
(6,6):— na? th
_ ctgo
(e;m) = <&

S tgh
(7€) cos ¢pna?
S tgh
(i,m) = cos ¢na?
1
., D=————
(i,€2) cos pna?sini



Réwnania wariacyjne dla elementéw orbitalnych c. d.

,_ 2R
~ na Oe
_ (1—e?)'/? 21/210R (1—e?)Y20R
S gr_ e ) IR
¢ na? 1-0-¢) ]86 na’e  Om
g teh (R R\ 1 oR
dt  na?(l—e2)1/2\ 9e Or na?(1 — e2)1/2sin i 0Q
. 20R (1-e&)? 211/29R tg 4 IR
T Thada ' nate 1-(1=e) G+ na?(1— e2)1/2 di
(- MoR @i oR
TT TTha%e oe na?(1 — e2)1/2 9i
1 OR

na?(1— e2)2sini di



W przypadku, gdy wybierzemy inne zmienne, np: zamiast 7 i €
wybieramy o i w (M = nt 4 o), nieznikajace nawiasy Poissona
beda miaty postacé:

(av U) = E
1—¢€?
(e,0) = naze
(e,w)= - Y1=¢
’ nae
(i, w) = ctgi
’ na?(1 — e2)1/2
(i.9) = :

 na®(1—e2)Y2sinj



Przypadek matego mimosrodu e i matego nachylenia i

» W niektérych réwnaniach e wystepuje w mianowniku. W
przypadku wyrazenia przy OR/0e w réwnaniu na € nie stanowi
to problemu bo

(1 _ e2)1/2
nae

(1—e?)/2e

[1—(1—e?)?] = na?[1 + (1 — e2)1/2]

» Natomiast w przypadku (7, e) potrzebne jest podstawienie
h=esinm i k = ecos7 (zmienig sie tylko réwnania na é i 7)

» W przypadku matego nachylenia, w podanych réwnaniach (na
di/dt i dQ/dt) problem moze powodowac obecnos$é¢ w
mianowniku sin i. Mozna wtedy skorzystaé¢ z podstawienia

p = tg (i)sin (Q) i q = tg (i) cos ()



Réwnania Gaussa

» W réwnaniach wariacyjnych Lagrange'a wystepuja pochodne
czastkowe funkgcji perturbacyjnej wzgledem elementéw
orbitalnych (uzyteczne przy rozwijaniu na szeregi, o tym
jeszcze dalej)

> W wielu zagadnieniach wygodne jest roztozenie sity
perturbujacej na sktadowe prostokatne.

» Roéwnania Gaussa: sita perturbujgca ma sktadowe
S - wzdtuz promienia wodzacego
T - w ptaszczyznie orbity, prostopadta do promienia
wodzacego i zgodna z ruchem orbitalnym ciata

W - prostopadta do ptaszczyzny orbity skierowana zgodnie z
momentem pedu



Cosinusy kierunkowe

Z réwnan
x = r(cos ucos 2 — sin usin 2 cos /)

y = r(cos usin Q + sin u cos 2 cos /)
z=rsinusini

u=19v+w=m—Q+ 1Y mozna policzyé A1, A2, A3 - cosinusy
kierunkowe promienia wodzacego z osiami x, y, z (a wiec rzuty
sktadowej S na osie x, y, z)

A1 = cos ucos ) —sinusin Qcos i

Ao = cos usin  + sin u cos £ cos |

A3 =sinusini



Cosinusy kierunkowe c.d.

Cosinusy kierunkowe skfadowej T

O\

1 = —— = —sinucosQ — cosusincos/
ou
o\ . ) .
Ho = 872 = —sin usin Q + cos u cos {2 cos i
u
_ 9% cosusini
H3 = ou
Cosinusy kierunkowe sktadowej W
1 o\
VG = —— —.1 =sinQsini
sinu i
1 o\
Vp = — —.2 = —cosQsini
sinu Oi
1 0)3 .
V3 = ———— = COS |

sinu 0i



Sktadowe sity perturbacyjne;

Sktadowe sity perturbacyjnej wzdtuz osi x, y, z s3 odpowiednio
rowne:

OR

— =X\S T w
Ox 19+ url +u11
OR

— = X\S T w
Dy 20 F 2l + 12
OR

= XS T w
B 30+t usl +uvs3

za$ skfadowe S, T, W s3 dane wzorami:

OR OR OR

S = )\1a +)\28 )\382

T_ 8R+ 8R+ OR
Mla Mza Msaz

W, OR ., OR . OR
"ox T8y, T2



Obliczanie sktadowych sity perturbacyjne;j

Jezeli oznaczymy przez c jeden z szesciu elementédw orbitalnych (a,
e, i, Q, m, €) to mozna otrzymac:

oR _ 8R8x+8R8y+87R%
dc Ox0dc Oy dc 0z dc

a nastepnie:
3
OR . 6)\] 1 8)\j 8(!’)\])
de _Z<A5+ ou " T sinu oi W) de

j=1
Korzystajac z wiasnosci sum iloczynéw cosinuséw kierunkowych
otrzymamy:
IR ONON\ | W = [ON DN
- _ g T il )
oc 5 r Z(@ 8c> smuZ}(@i 6c>

]j=




Obliczanie sktadowych sity perturbacyjne;j

Pamietamy, ze dla niezaburzonego ruchu keplerowskiego mamy
nastepujace zaleznosci:

r=a(l—ecosE)

E—esnE=M=nt+e—nm
rsin® = ayv/1—e2sinE
rcost¥ = a(cos E — e)

r(1+4 ecos®d) = a(1 — €?)



Obliczanie sktadowych sity perturbacyjnej c.d.

Pozwala to na obliczenie sktadowych sity perturbacyjne;j:

OoR r
92 a
aR:aScosf}qLa(qul) T sind
Oe p
OR .
E—rWsm(w—Fﬁ)
oR Lo .
a—Q—2rTsm E—rWsm/cos(w—Hﬂ‘)
OR aesin v a’
- =7 S\ 1—e2\ T
I 51_625+<r r\/ e)

OR aesiny a2
R —\/1— 2T
9 %1—e25+ r\/ e



Réwnania Gaussa

Co pozwala na otrzymanie réwnan Gaussa

da 2 . 1%

5 n\/ﬁ (5esm19—|— T;)
d 1— e2)1/2
ae _ (i[Ssim?—F T(cos¥ + cos E)]
dt na

di 1 r

— = W-cos(w+1

dt  npavli—e2 a ( )

dQ  Wrsin(w +9)
dt  na?(1—e2)/2sinj

_ 2)1/2 :
@:& —Scos+ T £+1 sin v —i—25in2i£
dt nae p 2 dt

[ dQ
+2(1— e?)1/2sin? éﬁ

de 2r OR e? dm

G na” 0 It+(-e) 7 dt



Réwnanie wariacyjne dla ruchu $redniego

Rézniczkujemy wzgledem czasu zaleznoéé n’a® = const i
otrzymujemy:
dn  3nda
dt ~ 2adt
co daje:
dn 3

= —ﬁ[Sesinﬁ—F T(1+ ecos]
avl—e

Réwnanie dla anomalii éredniej:

I\/I:6—7r+/ndt

mozna zrézniczkowad po czasie i otrzymad:

dh_de_dr [dn,
dt  dt



Réwnania wariacyjne Eulera

Dokonamy teraz roztozenia sity perturbujacej na sktadowe:

T - wzdtuz toru ciata

N - prostopadta do toru w ptaszczyznie orbity skierowana do
wewnatrz elipsy

W = W - prostopadfa do ptaszczyzny orbity skierowana zgodnie z
momentem pedu

Jezeli przez § oznaczymy kat pomiedzy wektorem predkosci
orbitalnej a wektorem promienia wodzacego to bedzie to kat
pomiedzy T i S

esin?
V14 2ecosd + €2

cosd =




Réwnania wariacyjne Eulera

Pomiedzy sktadowymi S, T,WiT, N W mamy nastepujace
zaleznosci: W = W i

T =Scosd+ Tsind

N = —Ssiné + T cosd
oraz

S=Tcosd— Nsind

T = Tsind + Ncosd
Réwnania na % i ‘L—? beda miaty taka sama postaé jak w
réwnianiach Gaussa.



d 2T
g 7\/1+2ecosq9+e2

dt  ny1-e?
de (1—62)1/2 . .y
P 2T(cos? +e) — N—sind
dt na\/1+2ecosz9+e2[ ( ) - a ]

dm (1_32)1/2 . . i dQ
ar 2T sin® + N(cos E + e)|+2sin® = ——
dt nae\/1+2ec0519+e2{ ( )] > dt
de o . .
P Tsind — N(1+ ecos?)| +
dt na’v/1+ 2ecos ¥ + €2 [ ( )]
e’ dm i dQ
- 2(1 — 2\1/2 2 I Hac
Tra-ed (1—e) sin™ S



