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Funkcja Lagrange’a i funkcja Hamiltona
I Funkcja Lagrange’a jest sumą energii kinetycznej i

potencjalnej punktów materialnych układu.

L = EK + U(qi , t)

I Równania Lagrange’a drugiego rodzaju

d
dt

(
∂L
∂q̇r

)
− ∂L
∂qr

= 0

I Funkcja Hamiltona (qr - uogólnione położenia, pr -
uogólnione pędy

H =
n∑
r=1

pr q̇r − L

I Równania Hamiltona

q̇r = ∂H
∂pr
ṗr = − ∂H

∂qr



Przekształcenia kanoniczne

Mamy 2n zmiennych kanonicznych: qr i pr (r = 1, 2, .., n). i 2n
zmiennych Qr i Pr . Przejście od układu zmiennych qr , pr do
układu zmiennych Qr , Pr wyrażone jest przez 2n równań

qr = qr (Q1,Q2, ..,Qn,P1,P2, ..,Pn, t)
pr = pr (Q1,Q2, ..,Qn,P1,P2, ..,Pn, t)

Jeżeli w rozpatrywanym zakresie zmiennych Q, P, t jakobian
powyższego przekształcenia nie jest równy 0

D(q1, q2, .., qn, p1, p2, .., pn)
D(Q1,Q2, ..,Qn,P1,P2, ..,Pn)

6= 0

to w tym zakresie istnieje przekształcenie odwrotne

Qr = Qr (q1, q2, .., qn, p1, p2, ..pn, t)
Pr = Pr (q1, q2, .., qn, p1, p2, ..pn, t)



Przekształcenia kanoniczne c.d.

Dla zmiennych qr i pr mamy spełnione równania Hamiltona

q̇r = ∂H
∂pr
ṗr = − ∂H

∂qr
,

a ze zmiennymi Qr i Pr związana jest nowa funkcja Hamiltona
K(Q,P,t), taka że

Q̇r = ∂K(Q,P,t)
∂Pr

Ṗr = −∂K(Q,P,t)
∂Qr

Przekształcenia spełniające te warunki nazywamy
przekształceniami kanonicznymi.



Funkcja tworząca

Z zasady najmniejszego działania przy warunkach brzegowych
δqr (t1) = 0 i δqr (t2) = 0 i przyjmując, że S jest funkcją czasu i
położenia otrzymujemy:

δ

∫ t2
t1
dS = δ

∫ t2
t1
L(q, q̇, t)dt = δ

∫ t2
t1

n∑
r=1

prdqr − H(q, p, t)dt = 0

a przy warunkach brzegowych δQr (t1) = 0 i δQr (t2) = 0

δ

∫ t2
t1
dS = δ

∫ t2
t1
L(q, q̇, t)dt = δ

∫ t2
t1

(
n∑
r=1

PrdQr − K (Q,P, t)

)
dt = 0

Odejmujemy równania i otrzymujemy

δ

∫ t2
t1

n∑
r=1

(prdqr − PrdQr )− (H − K )dt = 0



Równanie jest spełnione jeżeli
n∑
r=1

(prdqr − PrdQr )− [H(q, p, t)− K (Q,P, t)]dt = dΦ(q,Q, t)

Wtedy z warunków brzegowych δqr (t1) = 0 i δqr (t2) = 0 i
δQr (t1) = 0 i δQr (t2) = 0, wynika, że

δ

∫ t2
t1

dΦ

dt
dt =

∫ t2
t1

dδΦ

dt
dt = δΦ|t2t1 =

n∑
r=1

(
∂Φ

∂qr
δqr +

∂Φ

∂Qr
δQr

)
|t2t1 = 0

Jeżeli pochodną funkcji

dΦ

dt
=
∂Φ

∂t
+
n∑
r=1

(
∂Φ

∂qr
q̇r +

∂Φ

∂Qr
Q̇r

)
podstawimy do równania to otrzymamy warunki:

pr = ∂Φ(q,Q,t)
∂qr

Pr = −∂Φ(q,Q,t)
∂Qr

K (Q,P, t) = H(q, p, t) +
∂Φ(q,Q, t)

∂t



Równanie Hamiltona-Jacobiego
Jeżeli funkcja K (Q,P, t) = 0, to

Q̇r = ∂K(Q,P,t)
∂Pr

= 0, Ṗr = −∂K(Q,P,t)
∂Qr

= 0

i w związku z tym

Qr = const = βr , Ṗr = const = αr

Funkcję tworzącą bądziemy wtedy oznaczać W (q,Q, t) i będzie
spełniać równanie

H(q, p, t) +
∂W (q,Q, t)

∂t
= 0

ponieważ

pi =
∂W
∂qi

otrzymamy równanie nazywane równaniem Hamiltona - Jacobiego

∂W (q,Q, t)
∂t

+ H(q1, q2, ..qr ,
∂W
∂q1

,
∂W
∂q1

, ..,
∂W
∂qr

, t) = 0



Metoda wariacji stałych

Rozważmy układ punktów materialnych o funkcji Hamiltona (H1 -
hamiltonian zakłócający.

H = H0(q1, q2, .., qn, p1, p2, .., pn, t)+H1(q1, q2, .., qn, p1, p2, .., pn, t)

Ruch zakłócony układu opisany jest przez 2n równań

kanonicznych (i=1, .., n)

q̇i = ∂H
∂pi

i ṗi = − ∂H
∂qi

Załóżmy, że znamy ogólne rozwiązanie układu 2n równań
kanonicznych (i=1, .., n)

q̇i = ∂H0
∂pi

i ṗi = −∂H0
∂qi



Metoda wariacji stałych c.d.

qi = qi (α1, α2, .., αn, β1, β2, .., βn, t)

pi = pi (α1, α2, .., αn, β1, β2, .., βn, t)

gdzie αi , βi są dowolnymi, niezależnymi stałymi całkowania.
Rozwiązania na qi i pi są dane przez związki:

pi = ∂W
∂qi

, βi = ∂W
∂αi

w których funkcja W =W (q1, q2, .., qn, α1, α2, .., αn, t) jest całką
zupełną równania Hamiltona - Jacobiego

∂W
∂t

+ H0(q1, q2, .., qn,
∂W
∂q1

,
∂W
∂q2

, ..,
∂W
∂qn

, t) = 0



Metoda wariacji stałych c.d.

Rozwiązanie układu równań kanonicznych o funkcji Hamiltona
H = H0 + H1 możemy otrzymać w podobnej postaci, ale αi , βi
będą nowymi zmiennymi zależnymi od czasu. Chcemy znaleźć
warunki jakie mają spełniać αi (t), βi (t), aby funkcje q(αi , βi , t),
p(αi , βi , t) spełniały równania kanoniczne dla ruchu zakłóconego.

∂qi
∂t

+
n∑
r=1

(
∂qi
∂αr

α̇r +
∂qi
∂βr

β̇r

)
=
∂(H0 + H1)

∂pi

∂pi
∂t

+
n∑
r=1

(
∂pi
∂αr

α̇r +
∂pi
∂βr

β̇r

)
= −∂(H0 + H1)

∂qi



Metoda wariacji stałych c.d.

Ponieważ ∂qi
∂t = ∂H0

∂pi
oraz ∂pi

∂t = −∂H0
∂qi

n∑
r=1

(
∂qi
∂αr

α̇r +
∂qi
∂βr

β̇r

)
=
∂H1
∂pi

n∑
r=1

(
∂pi
∂αr

α̇r +
∂pi
∂βr

β̇r

)
= −∂H1

∂qi

Mnożąc pierwsze równania przez ∂pi/∂αj , a drugie przez
−∂qi/∂αj , a następnie sumując po i otrzymujemy:∑n
i=1

∑n
r=1

(
∂qi
∂αr

∂pi
∂αj
− ∂pi

∂αr
∂qi
∂αj

)
α̇r +

∑n
i=1

∑n
r=1

(
∂qi
∂βr

∂pi
∂αj
− ∂pi

∂βr
∂qi
∂αj

)
β̇r

=
∑n
i=1

(
∂H1
∂pi

∂pi
∂αj

+ ∂H1
∂qi

∂qi
∂αj

)



Metoda wariacji stałych c.d.
Mnożąc pierwsze równania przez ∂pi/∂βj , a drugie przez
−∂qi/∂βj , a następnie sumując po i otrzymujemy:∑n
i=1

∑n
r=1

(
∂qi
∂αr

∂pi
∂βj
− ∂pi

∂αr
∂qi
∂βj

)
α̇r +

∑n
i=1

∑n
r=1

(
∂qi
∂βr

∂pi
∂βj
− ∂pi

∂βr
∂qi
∂βj

)
β̇r

=
∑n
i=1

(
∂H1
∂pi

∂pi
∂βj

+ ∂H1
∂qi

∂qi
∂βj

)
Hamiltonian H1, będący funkcją zmiennych q i p możemy przy
pomocy zależności qi (α1, α2, .., αn, β1, β2, .., βn, t) i
pi = pi (α1, α2, .., αn, β1, β2, .., βn, t) wyrazić jako funkcję α β,
przez co prawe strony równań możemy wyrazić jako:

n∑
i=1

(
∂H1
∂pi

∂pi
∂αj

+
∂H1
∂qi

∂qi
∂αj

)
=
∂H1
∂αj

n∑
i=1

(
∂H1
∂pi

∂pi
∂βj

+
∂H1
∂qi

∂qi
∂βj

)
=
∂H1
∂βj



Metoda wariacji stałych c.d.

Równania możemy zapisać za pomocą nawiasów Lagrange’a

n∑
i=1

[αr , αj ]α̇r +
n∑
i=1

[βr , αj ]β̇r =
∂H1
∂αj

n∑
i=1

[αr , βj ]α̇r +
n∑
i=1

[βr , βj ]β̇r =
∂H1
∂βj

Równania te są słuszne dla każdego układu stałych αi , βi , ale
przyjmują szczególnie prostą postać jeżeli αi βi są zmiennymi
kanonicznymi. Możemy to pokazać przekształcając funkcję
W (q, α, t) w funkcję W ′(α, β, t)

∂W ′

∂αj
=
∂W (q, α, t)

∂αj
+
n∑
i=1

∂W
∂qi

∂qi
∂αj

= βj +
n∑
i=1

pi
∂qi
∂αj



Metoda wariacji stałych c.d.
W podobny sposób można otrzymać

∂W ′

∂βj
=
n∑
i=1

pi
∂qi
∂βj

Zatem

[αr , βj ] =
n∑
i=1

(
∂qi
∂αr

∂pi
∂βj
− ∂pi
∂αr

∂qi
∂βj

)
=

∂

∂βj

n∑
i=1

pi
∂qi
∂αr
− ∂

∂αr

n∑
i=1

pi
∂qi
∂βj

i następnie

[αr , βj ] =
∂

∂βj

(
∂W ′

∂αr
− βr

)
− ∂

∂αr

(
∂W ′

∂βj

)
[αr , βj ] = 0 dla r 6= j oraz [αi , βi ] = −1 lub [βi , αi ] = 1 dla
r = j = i . Z własności nawiasów Lagrange’a [αr , αj ] = 0 i
[βr , βj ] = 0 dla wszystkich j , r = 1, 2, .., n



Równania w postaci kanonicznej

β̇i =
∂H1
∂αi

=
∂(H − H0)

∂αi

α̇i = −∂H1
∂βi

=
∂(H − H0)

∂βi



Równania ruchu perturbowanego

Równania ruchu perturbowanego możemy zapisać w postaci:

ẍi + K 2
xi
r3in

=
∂R
∂xi

ÿi + K 2
yi
r3in

=
∂R
∂yi

z̈i + K 2
zi
r3in

=
∂R
∂zi

(i=1,2, .. , n-1, i 6= j), gdzie K 2 = k2(1 +mi ) i

R = k2
n−1∑
j=1

mj

(
1
rij
−
xixj + yiyj + zizj

r3jn

)



Równania ruchu w zmiennych kanonicznych

ẋ = ∂H
∂ẋ , ẏ = ∂H

∂ẏ , ż = ∂H
∂ż

ẍ = −∂H
∂x , ÿ = −∂H

∂y , z̈ = −∂H
∂z

Dla ruchu niezaburzonego:

ẋ = ∂H0
∂ẋ , ẏ = ∂H0

∂ẏ , ż = ∂H0
∂ż

ẍ = −∂H0
∂x , ÿ = −∂H0

∂y , z̈ = −∂H0
∂z

gdzie H = H0 + H1 = H0 − R



Stałe kanoniczne rozwiązania keplerowskiego

Rozwiązanie równania ruchu niezaburzonego metodą Hamiltona -
Jacobiego daje nam 6 stałych kanonicznych α1, α2, α3, β1, β2, β3.
Rozwiązania mają formalną postać:

x = f1(α1, α2, α3, β1, β2, β3, t) ẋ = g1(α1, α2, α3, β1, β2, β3, t)

y = f2(α1, α2, α3, β1, β2, β3, t) ẏ = g2(α1, α2, α3, β1, β2, β3, t)

z = f3(α1, α2, α3, β1, β2, β3, t) ż = g3(α1, α2, α3, β1, β2, β3, t)

Zmienne kanoniczne są następujące:

α1 = −K22a α2 = K
√
a(1− e2) α3 = K

√
a(1− e2) cos i

β1 = −t0 =
(
ε−π
K

)
a3/2 β2 = π − Ω = ω β3 = Ω



Równania na pochodne czasowe stałych kanonicznych całkowania
równania zaburzonego mają postać:

α̇i = ∂R
∂βi
, β̇i = − ∂R

∂αi

Aby je otrzymać przypominamy związki między współrzędnymi
planety, a jej elementami orbitalnymi:

x = r(cos u cos Ω− sin u sin Ω cos i)
y = r(cos u sin Ω + sin u cos Ω cos i)

z = r sin u sin i

E − e sinE = nt + ε− π

u = ϑ+ ω, r = a(1− e cosE ), tg E2 =
√
1−e
1+e tg ϑ

2



Podane zależności pomiędzy elementami kanonicznymi a
elementami orbitalnymi i elementami orbitalnymi a współrzędnymi
kartezjańskimi umożliwiają za pomocą równań opisujących zmiany
elementów kanonicznych zapisać równania na zmiany elementów
orbitalnych przez co możemy otrzymać:

x = φ1(a, e, i ,Ω, π, ε, t),
y = φ2(a, e, i ,Ω, π, ε, t),
z = φ3(a, e, i ,Ω, π, ε, t),
ẋ = ψ1(a, e, i ,Ω, π, ε, t),
ẏ = ψ2(a, e, i ,Ω, π, ε, t),
ż = ψ3(a, e, i ,Ω, π, ε, t),



Orbita oskulacyjna

Niech w chwili t0 elementy orbitalne przyjmą wartości a0, e0, i0,
Ω0, π0, ε0 wtedy współrzędne prostokątne i ich pochodne
wyrażamy w zależności od zmiennej t przez:

x0 = φ1(a0, e0, i0,Ω0, π0, ε0, t),
y0 = φ2(a0, e0, i0,Ω0, π0, ε0, t),
z0 = φ3(a0, e0, i0,Ω0, π0, ε0, t),
ẋ0 = ψ1(a0, e0, i0,Ω0, π0, ε0, t),
ẏ0 = ψ2(a0, e0, i0,Ω0, π0, ε0, t),
ż0 = ψ3(a0, e0, i0,Ω0, π0, ε0, t)

Jeżeli począwszy od chwili t0 R = 0, to elementy a0, e0, i0, Ω0, π0,
ε0 mają stałe wartości i równania te przedstawiają ruch keplerowski
fikcyjnej planety o masie m. Ponieważ w chwili t0 elementy a, e, i ,
Ω, π, ε przyjmują wartości a0, e0, i0, Ω0, π0, ε0 to
x = x0, y = y0, z = z0, ẋ = ẋ0, ẏ = ẏ0, ż = ż0



Orbita oskulacyjna c.d.
I W nieskończenie małym iterwale czasu orbita rzeczywista

planety P będzie styczna do keplerowskiej orbity planety
fikcyjnej i w przedziale czasu dt oba ciała przebiegną
jednakowy łuk.

I W różnych chwilach czasu dla orbity ciała P otrzymamy dwie
różne orbity keplerowskie.

I Sześć stałych a0, e0, i0, Ω0, π0, ε0 wyrażają w chwili t0
(nazywanej epoką oskulacji) odpowiednią orbitę oskulacyjną

I Orbita ciała P jest obwiednią nieskończenie wielu orbit
oskulacyjnych. Za pomocą wariacji elementów możemy
porównywać elementy oskulacyjne w epoce t z elementami
oskulacyjnymi w epoce t0.

I Różnice δa = a− a0, δe = e − e0, δi = i − i0,
δΩ = Ω− Ω0, δπ = π − π0, δε = ε− ε0 nazywamy
perturbacjami elementów.

I Ruch po orbicie rzeczywistej jest ruchem perturbowanym na
skutek działania siły perturbacyjnej o składowych ∂R/∂x ,
∂R/∂y , ∂R/∂z



Równania wariacyjne dla elementów orbitalnych
Równania na zmianę elementów kanonicznych chcemy zamienić na
równania na zmianę elementów orbitalnych. Elementy a, e, i , ε, π,
Ω oznaczymy przez c1, c2, .., c6. Ponieważ są funkcją elementów
kanonicznych, to otrzymamy zależność (j = 1, 2, .., 6):

ċj =
3∑
i=1

(
∂cj
∂αi

α̇i +
∂cj
∂βi

β̇i

)

ċj =
3∑
i=1

(
∂cj
∂αi

∂R
∂βi
−
∂cj
∂βi

∂R
∂αi

)

ċj =
3∑
i=1

∂cj
∂αi

6∑
k=1

∂R
∂ck

∂ck
∂βi
−
3∑
i=1

∂cj
∂βi

6∑
k=1

∂R
∂ck

∂ck
∂αi

ċj =
6∑
k=1

∂R
∂ck

3∑
i=1

(
∂cj
∂αi

∂ck
∂βi
−
∂cj
∂βi

∂ck
∂αi

)



Równania wariacyjne dla elementów orbitalnych c. d.

Otrzymujemy sześć (j = 1, 2, .., 6) równań zawierających nawiasy
Poissona:

ċj =
6∑
k=1

(cj , ck)
∂R
∂ck

Zależność elementów orbity od elementów kanonicznych jest
następująca:

c1 = a = − K22α1 c4 = ε = β2 + β3 + β1
K2 (−2α1)3/2

c2 = e =

√
1 +

2α1α22
K4 c5 = π = β2 + β3

c3 = i = arc cos α3α2 c6 = Ω = β3



Wartości nawiasów Poissona dla elementów orbitalnych

Otrzymujemy tylko 6 różnych od zera nawiasów Poissona
(e = sinφ):

(a, ε) =
2
na

(e, ε) = −cosφ

na2
tg
φ

2

(e, π) = −ctg φ

na2

(i , ε) = −
tg i2

cosφna2

(i , π) = −
tg i2

cosφna2

(i ,Ω) = − 1
cosφna2 sin i



Równania wariacyjne dla elementów orbitalnych c. d.

ȧ =
2
na
∂R
∂ε

ė = −(1− e2)1/2

na2e
[1− (1− e2)1/2]∂R

∂ε
− (1− e2)1/2

na2e
∂R
∂π

di
dt

= −
tg i2

na2(1− e2)1/2

(
∂R
∂ε

+
∂R
∂π

)
− 1
na2(1− e2)1/2 sin i

∂R
∂Ω

ε̇ = − 2
na
∂R
∂a

+
(1− e2)1/2

na2e
[1−(1−e2)1/2]∂R

∂e
+

tg i2
na2(1− e2)1/2

∂R
∂i

π̇ =
(1− e2)1/2

na2e
∂R
∂e

+
tg i2

na2(1− e2)1/2
∂R
∂i

Ω̇ =
1

na2(1− e2)1/2 sin i
∂R
∂i



W przypadku, gdy wybierzemy inne zmienne, np: zamiast π i ε
wybieramy σ i ω (M = nt + σ), nieznikające nawiasy Poissona
będą miały postać:

(a, σ) =
2
na

(e, σ) =
1− e2

na2e

(e, ω) = −
√

1− e2
na2e

(i , ω) =
ctg i

na2(1− e2)1/2

(i ,Ω) = − 1
na2(1− e2)1/2 sin i



Przypadek małego mimośrodu e i małego nachylenia i

I W niektórych równaniach e występuje w mianowniku. W
przypadku wyrażenia przy ∂R/∂ε w równaniu na ė nie stanowi
to problemu bo

(1− e2)1/2

na2e
[1− (1− e2)1/2] =

(1− e2)1/2e
na2[1 + (1− e2)1/2]

I Natomiast w przypadku (π, e) potrzebne jest podstawienie
h = e sinπ i k = e cosπ (zmienią się tylko równania na ė i π̇)

I W przypadku małego nachylenia, w podanych równaniach (na
di/dt i dΩ/dt) problem może powodować obecność w
mianowniku sin i . Można wtedy skorzystać z podstawienia
p = tg (i) sin (Ω) i q = tg (i) cos (Ω)



Równania Gaussa

I W równaniach wariacyjnych Lagrange’a występują pochodne
cząstkowe funkcji perturbacyjnej względem elementów
orbitalnych (użyteczne przy rozwijaniu na szeregi, o tym
jeszcze dalej)

I W wielu zagadnieniach wygodne jest rozłożenie siły
perturbującej na składowe prostokątne.

I Równania Gaussa: siła perturbująca ma składowe
S - wzdłuż promienia wodzącego
T - w płaszczyźnie orbity, prostopadła do promienia
wodzącego i zgodna z ruchem orbitalnym ciała
W - prostopadła do płaszczyzny orbity skierowana zgodnie z
momentem pędu



Cosinusy kierunkowe

Z równań
x = r(cos u cos Ω− sin u sin Ω cos i)
y = r(cos u sin Ω + sin u cos Ω cos i)

z = r sin u sin i

u = ϑ+ ω = π − Ω + ϑ można policzyć λ1, λ2, λ3 - cosinusy
kierunkowe promienia wodzącego z osiami x , y , z (a więc rzuty
składowej S na osie x , y , z)

λ1 = cos u cos Ω− sin u sin Ω cos i

λ2 = cos u sin Ω + sin u cos Ω cos i

λ3 = sin u sin i



Cosinusy kierunkowe c.d.
Cosinusy kierunkowe składowej T

µ1 =
∂λ1
∂u

= − sin u cos Ω− cos u sin Ω cos i

µ2 =
∂λ2
∂u

= − sin u sin Ω + cos u cos Ω cos i

µ3 =
∂λ3
∂u

= cos u sin i

Cosinusy kierunkowe składowej W

ν1 =
1

sin u
∂λ1
∂i

= sin Ω sin i

ν2 =
1

sin u
∂λ2
∂i

= − cos Ω sin i

ν3 =
1

sin u
∂λ3
∂i

= cos i



Składowe siły perturbacyjnej
Składowe siły perturbacyjnej wzdłuż osi x , y , z są odpowiednio
równe:

∂R
∂x

= λ1S + µ1T + ν1W

∂R
∂y

= λ2S + µ2T + ν2W

∂R
∂z

= λ3S + µ3T + ν3W

zaś składowe S , T , W są dane wzorami:

S = λ1
∂R
∂x

+ λ2
∂R
∂y

+ λ3
∂R
∂z

T = µ1
∂R
∂x

+ µ2
∂R
∂y

+ µ3
∂R
∂z

W = ν1
∂R
∂x

+ ν2
∂R
∂y

+ ν3
∂R
∂z



Obliczanie składowych siły perturbacyjnej

Jeżeli oznaczymy przez c jeden z sześciu elementów orbitalnych (a,
e, i , Ω, π, ε) to można otrzymać:

∂R
∂c

=
∂R
∂x

∂x
∂c

+
∂R
∂y

∂y
∂c

+
∂R
∂z

∂z
∂c

a następnie:

∂R
∂c

=
3∑
j=1

(
λjS +

∂λj
∂u
T +

1
sin u

∂λj
∂i
W
)
∂(rλj)
∂c

Korzystając z własności sum iloczynów cosinusów kierunkowych
otrzymamy:

∂R
∂c

= S
∂r
∂c

+ rT
3∑
j=1

(
∂λj
∂u

∂λj
∂c

)
+
rW
sin u

3∑
j=1

(
∂λj
∂i

∂λj
∂c

)



Obliczanie składowych siły perturbacyjnej

Pamiętamy, że dla niezaburzonego ruchu keplerowskiego mamy
następujące zależności:

r = a(1− e cosE )

E − e sinE = M = nt + ε− π

r sinϑ = a
√

1− e2 sinE

r cosϑ = a(cosE − e)

r(1 + e cosϑ) = a(1− e2)



Obliczanie składowych siły perturbacyjnej c.d.
Pozwala to na obliczenie składowych siły perturbacyjnej:

∂R
∂a

=
r
a
S

∂R
∂e

= −aS cosϑ+ a
(
r
p

+ 1
)
T sinϑ

∂R
∂i

= rW sin (ω + ϑ)

∂R
∂Ω

= 2rT sin2
i
2
− rW sin i cos (ω + ϑ)

∂R
∂π

= − ae sinϑ√
1− e2

S +

(
r − a

2

r

√
1− e2

)
T

∂R
∂ε

=
ae sinϑ√

1− e2
S +
a2

r

√
1− e2T



Równania Gaussa

Co pozwala na otrzymanie równań Gaussa

da
dt

=
2

n
√

1− e2
(
Se sinϑ+ T

p
r

)
de
dt

=
(1− e2)1/2

na
[S sinϑ+ T (cosϑ+ cosE )]

di
dt

=
1

na
√

1− e2
W
r
a

cos (ω + ϑ)

dΩ

dt
=
Wr sin (ω + ϑ)

na2(1− e2)1/2 sin i

dπ
dt

=
(1− e2)1/2

nae

[
−S cosϑ+ T

(
r
p

+ 1
)

sinϑ

]
+ 2 sin2

i
2
dΩ

dt

dε
dt

= − 2r
naa
S+

∂R
∂a

+
e2

[1 + (1− e2)1/2]
dπ
dt

+ 2(1−e2)1/2 sin2
i
2
dΩ

dt



Równanie wariacyjne dla ruchu średniego
Różniczkujemy względem czasu zależność n2a3 = const i
otrzymujemy:

dn
dt

= −3
2
n
a
da
dt

co daje:

dn
dt

= − 3

a
√

1− e2
[Se sinϑ+ T (1 + e cosϑ]

Równanie dla anomalii średniej:

M = ε− π +

∫
ndt

można zróżniczkować po czasie i otrzymać:

dM
dt

=
dε
dt
− dπ
dt

+

∫
dn
dt
dt



Równania wariacyjne Eulera

Dokonamy teraz rozłożenia siły perturbującej na składowe:
T̃ - wzdłuż toru ciała
Ñ - prostopadła do toru w płaszczyźnie orbity skierowana do
wewnątrz elipsy
W̃ = W - prostopadła do płaszczyzny orbity skierowana zgodnie z
momentem pędu
Jeżeli przez δ oznaczymy kąt pomiędzy wektorem prędkości
orbitalnej a wektorem promienia wodzącego to będzie to kąt
pomiędzy T̃ i S

cos δ =
esinϑ√

1 + 2e cosϑ+ e2



Równania wariacyjne Eulera

Pomiędzy składowymi S , T , W i T̃ , Ñ, W̃ mamy następujące
zależności: W̃ =W i

T̃ = S cos δ + T sin δ

Ñ = −S sin δ + T cos δ

oraz
S = T̃ cos δ − Ñ sin δ

T = T̃ sin δ + Ñ cos δ

Równania na didt i dΩ
dt będą miały taką samą postać jak w

równianiach Gaussa.



da
dt

=
2T̃

n
√

1− e2
√

1 + 2e cosϑ+ e2

de
dt

=
(1− e2)1/2

na
√

1 + 2e cosϑ+ e2
[2T̃ (cosϑ+ e)− Ñ r

a
sinϑ]

dπ
dt

=
(1− e2)1/2

nae
√

1 + 2e cosϑ+ e2

[
2T̃ sinϑ+ Ñ(cosE + e)

]
+2 sin2

i
2
dΩ

dt

dε
dt

= − 2r

na2
√

1 + 2e cosϑ+ e2

[
T̃ sinϑ− Ñ(1 + e cosϑ)

]
+

+
e2

[1 + (1− e2)1/2]
dπ
dt

+ 2(1− e2)1/2 sin2
i
2
dΩ

dt


