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Funkcja perturbacyjna w układzie n-punktów materialnych
Rozpatrujemy ruch względem punktu n, o największej masie.
Funkcja perturbacyjna dla punktu i będzie miała postać:
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Jeżeli przyjmiemy, że
Hij - kąt pomiędzy promieniami wodzącymi ri i rj
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Formalne rozwiązanie równań wariacyjnych Lagrange’a

Rozwiązania równań wariacyjnych Lagrange’a dokonuje się metodą
rozwinięcia funkcji perturbacyjnej na szereg w postaci

R =
∑
C cosD

gdzie, w przypadku dwóch planet o masach m i m’
C = C (a, a′, e, e ′, i , i ′), a czynniki D mają postać
D = j0(nt + ε) + j1(n′t + ε′) + j2π + j3π′ + j4Ω + j5Ω′ , gdzie j0, j1,
.., j5 są dowolnymi, całkowitymi liczbami dodatnimi, ujemnymi, lub
równymi zeru, które spełniają warunek

∑5
i=0 ji = 0.

Po prawej stronie równań wariacyjnych Lagrange’a znajduje się n -
średni ruch własny zależny od a, przez co różniczkowanie
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cosD − t dn
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∑
C sinD

Obecność czasu w drugim członie powoduje trudność w całkowaniu
równania dε/dt (ε = −nT + π ).



Modyfikacja równań wariacyjnych Lagrange’a.

Pochodną ∂R/∂a możemy zapisać jako
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to równianie możemy zapisać jako
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Modyfikacja równań wariacyjnych Lagrange’a c.d

Równanie na dε/dt będzie miało postać

dε
dt + t dndt = − 2na
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W celu wyeliminowania t występującego poza argumentami D
wprowadzamy zmienną εI określoną równaniem

dεI
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=
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i równanie różniczkowe na εI będzie miało postać wyjściowego
równania na ε
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Interpretacja zmiennej εI

Znaczenie zmiennej εI wynika ze zróżniczkowania średniej długości
λ = nt + ε

dλ
dt

= n + t
dn
dt

+
dε
dt

stąd
dλ
dt

= n +
dεI

dt
i całkując równanie otrzymamy, że

λ = nt + ε =

∫
ndt + εI

przy założeniu, że stała całkowania zawarta jest w εI jeżeli n jest
znane.
Z tego równania wynika, że ∂R/∂ε = ∂R/∂εI

Wielkość
∫
ndt nazywamy średnim ruchem na orbicie

perturbowanej.



Modyfikacja równań wariacyjnych Lagrange’a c.d

Zmodyfikowane równania wariacyjne Lagrange’a różnią się od
pierwotnych tym, że ε i ∂R/∂a zastąpione są przez εI i (∂R/∂a)n i
w funkcji perturbacyjnej należy zastąpić nt + ε przez

∫
ndt + εI

Oznaczając
∫
ndt = ρ otrzymamy n = dρ/dt oraz

d2ρ/dt2 = dn/dt i
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Przypadek dwóch planet

Funkcja perturbacyjna w przypadku zaburzenia ruchu ciała
względem Słońca przez odległe punktowe masy ma postać

Rij = k2
n−1∑
j=1
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)

W przypadku dwóch planet o masach m i m′ i o współrzędnych
względem Słońca (x , y , z) i (x ′, y ′, z ′) (badamy wpływ perturbacji
jednej planety na drugą i odwrotnie)
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Formalne rozwiązanie równań wariacyjnych Lagrange’a
Rozwiązania równań wariacyjnych Lagrange’a dokonuje się metodą
rozwinięcia funkcji perturbacyjnej na szereg w postaci

R =
∑
C cosD

R ′ =
∑
C ′ cosD ′

gdzie , w przypadku dwóch planet o masach m i m’
I ρ =

∫
ndt i ρ′ =

∫
n′dt

I C = C (a, a′, e, e ′, i , i ′),
I czynniki D mają postać
D = j0(nt + ε) + j1(n′t + ε′) + j2π + j3π′ + j4Ω + j5Ω′) , gdzie
j0, j1, .., j5 są dowolnymi, całkowitymi liczbami dodatnimi,
ujemnymi, lub równymi zeru, które spełniają warunek∑5
i=0 ji = 0

I Masy wchodzą do współczynników C i C ′: C = C (m′) i
C ′ = C ′(m)



Formalne rozwiązanie równań wariacyjnych Lagrange’a
Metodą kolejnych przybliżeń można otrzymać rozwiązania na
elementy orbitalne c i c ′ w postaci szeregów:

c = c0 + δ1c + δ2c + ...

c ′ = c ′0 + δ1c ′ + δ2c ′ + ...,

gdzie δp zawiera równania rzędu p względem mas m i m′. Podobnie

n = n0 + δ1n + δ2n + ...,
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Ruch własny

δ1n = −3
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n0

δ2n = n0

[
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(
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)2]
ze zmian ruchu własnego otrzymujemy kolejne poprawki
uśrednionego ruchu własnego: ρ0 = n0t, δ1ρ =

∫
δ1ndt,

δ2ρ =
∫
δ2ndt i ρ = ρ0 + δ1ρ+ δ2ρ



Perturbacje pierwszego rzędu

R0 =
∑
C0 cosD0 R ′0 =

∑
C ′0 cosD ′0

C = C (a0, a′0, e0, e
′
0, i0, i

′
0), C ′ = C ′(a0, a′0, e0, e

′
0, i0, i

′
0),

D = j0(n0t + ε0) + j1(n′0t + ε′0) + j2π0 + j3π′0 + j4Ω0 + j5Ω′0)
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Perturbacje pierwszego rzędu
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Perturbacje pierwszego rzędu - perturbacje okresowe

Ponieważ prawe strony zawierają tylko całki
∫

cosD0dt = sinD0
j0n0+j1n′0

i
∫

sinD0dt = − cosD0
j0n0+j1n′0

to dla c = a, e, i

δ1c =
∑ J
j0n0 + j1n′0

cosD0

a dla c = ε, π, Ω

δ1c =
∑ K
j0n0 + j1n′0

sinD0

Analogiczne wzory otrzymujemy dla planety P’
Perturbacje pierwszego rzędu są perturbacjami okresowymi o
okresie T równym okresowi argumentu D0

T =
2π

j0n0 + j1n′0



Perturbacje pierwszego rzędu - perturbacje wiekowe

W przypadku j0 = j1 = 0 mamy do czynienia z sytuacją że
j0n0 + j1n′0 = 0, nawet jeżeli średnie ruchy n0 i n′0 są
niewspółmierne. Jeżeli j0 = j1 = 0 to D0 ma stałą wielkość

D0 = D0∗ = j2π0 + j3π′0 + j4Ω0 + j5Ω′0

i
∫

cosD0dt = t cosD0∗ i
∫

sinD0dt = t sinD0∗. Perturbacje
wiekowe pierwszego rzędu otrzymujemy dla wyrazów funkcji
perturbacyjnej, w których argumenty D0 nie zależą od czasu.
[R] - część wiekowa funkcji perturbacyjnej.

∂[R]

∂ε0
= 0

∂[R ′]
∂ε′0

= 0



Zatem uwzględniając perturbacje pierwszego rzędu możemy zapisać

a = a0 +
∑ J
j0n0 + j1n′0

cosD0

dla c = e, i oraz j0 6= 0 i j1 6= 0

c = c0 + At +
∑ J
j0n0 + j1n′0

cosD0

a dla c = ε, π, Ω oraz j0 6= 0 i j1 6= 0

c = c0 + Bt +
∑ K
j0n0 + j1n′0

sinD0

W pierwszy rzędzie rachunku perturbacyjnego rozmiary wielkich
półosi a i i średni ruch własny n nie zawierają wyrazów wiekowych.



Perturbacje długookresowe
W układzie planetarnym często możemy mieć sytuację, że

T =
2π

j0n0 + j1n′0

jest znacznie większy od okresów planet T0 = 2π
n0

i T ′0 = 2π
n′0

.
Takie perturbacje nazywamy długookresowymi i mają one istotną
rolę w układzie planetarnym. Są one bardzo znaczne w średniej
długości (λ = ρ+ ε).

λ = ρ0 + ε0 + δ1(ρ+ ε) + ...

δ1λ = δ1ρ+ δ1ε

δ1ρ = −3
2
n0
a0

∫
δ1adt =

3
a02

∑
j0C0

∫ ∫
sinD0dtdt

δ1ρ = − 3
a02

∑ j0C0 sinD0
(j0n0 + j1n′0)2



Przypadek Jowisza i Saturna

Średni ruch dzienny Jowisza (na epokę 1900) n0 = 299”.1283
Średni ruch dzienny Saturna (na epokę 1900) n′0 = 120”4547
I n0 − 2n′0 = 58”.2189, co odpowiada T = 61 lat - okres dość

krótki ale wyrazy zawierające w argumentach D0 wielkość
(λ− 2λ′) lub jej wielokrotność mogą występować w wyrazach
pierwszego rzędu rozwinięcia względem mimośrodów i
nachyleń.

I 2n0 − 5n′0 = -4”.0169, co odpowiada T = 880 lat - wyrazy
perturbacyjne o największym wpływie na długości planet
(wyrazy co najmniej trzeciego rzędu względem e, i) amplituda
zmian długości 48’ dla Saturna i 20’ dla Jowisza.

I 29n0 − 72n′0 = +1”.9823, co odpowiada T = 1800 lat, ale
wyrazy odpowiadające (29λ− 72λ′) nie pojawiają się przy
wyrazach rozwinięcia wzlędem e, i o rzędzie niższym niż 43.



Zależność Laplace’a

I Długookresowe perturbacje δρ i δρ′ w średnich długościach
λ = ρ+ ε i λ′ = ρ′ + ε′ dwóch planet, które wywołane są ich
wzajemnym przyciąganiem związane są zależnością Laplace’a
(1799):

m
√
aδρ = −m′

√
a′δρ′

I Dla Jowisza i Saturna ich długość przy uwzględnieniu
głównego zaburzenia została przez Laplace’a określona jako

λJ = nJt + εJ + 20′sin(5nS t − 2nJt + 49o8′40′′)

λS = nS t + εS − 46′50′′sin(5nS t − 2nJt + 49o8′40′′)

gdzie warunki początkowe były określone na rok 1700.



Wyrazy wiekowe wyznaczone przez Lagrange’a i Laplace’a

I Zastosowane zostało podstawienie
h = e sinπ k = e cosπ
i
p = tg (i) sin (Ω) q = tg (i) cos (Ω)

I Z otrzymanych równań na pochodne czasowe h, k , p i q
zostały zachowane wyrazy najniższego rzędu w h, k , p i q i
otrzymano równania dla wyrazów wiekowych.



Wyrazy wiekowe dla ruchu peryhelium i mimośrodu -
Laskar et al. 2004, A&A, 428, 285.



Wyrazy wiekowe wyznaczone dla ruchu linii węzłów i
nachylenia Laskar et al. 2004, A&A, 428, 285.



Zmiany elementów orbitalnych Ziemi (barycentrum układu
Ziemia-Księżyc - obliczenia numeryczne - wielka półoś
orbity w okresie od -250 do 250 milionow lat (Laskar et al.
2004).



Zmiany elementów orbitalnych Ziemi (barycentrum układu
Ziemia-Księżyc) - obliczenia numeryczne - mimośród
(Laskar et al. 2004).



Zmiany elementów orbitalnych Ziemi (barycentrum układu
Ziemia-Księżyc - obliczenia numeryczne - nachylenie
płaszczyzny orbity (Laskar et al. 2004).



Zmiany elementów orbitalnych Marsa - obliczenia
numeryczne - mimośród (Laskar 2012).



Ważniejsze rezonanse w układzie Słonecznym

Księżyce Jowisza
Io - Europa: λI − 2λE+(ωE lub ωI ) = 0o lub 180o

Europa - Ganimedes: λE − 2λG + ωE = 0o

Io - Europa - Ganimedes: λI − 3λE + 2λG = 180o

Układ Saturna
Mimas - Tetyda: 2λM − 4λT + ΩM + ΩT = 0o

Enceladus - Dione: λE − 2λD + ωE = 0o

Tytan - Hiperion: 3λT − 4λH + ωH = 180o

Mimas - przerwa Cassiniego: λC − 2λM + ωC = 0o

Tytyda - Telesto (L4) - Kalipso (L5)
Dione - Helena (L4) - Polideukes (L5)



Ważniejsze rezonanse w układzie Słonecznym c.d.

Planetoidy - Jowisz
Grecy (L4), Trojanie (L5) (λ− λJ = ±60o)
Thule: 3λT − 4λJ + ωT = 0o

Hilda: 2λH − 3λJ + ωH = 0o

Gringua: λG − 4λJ + ωG = 0o

przerwy Kirkwooda 3:1, 5:2, 7:3, 2:1

Neptun - Pluton: 2λN − 3λP + ωP = 180o



Chaos w układzie planetarnym Słońca

I Obliczenia numeryczne obejmujące wielkie planety Układu
Słonecznego (możliwość długiego kroku całkowania)
prowadzone dla okresu 875 milionów lat (Sussman i Wisdom
1988) nie wykazywały dla nich zachowania chaotycznego.
Stwierdzono chaos dla Plutona z czasem Liapunowa ok 20 My.

I Uwzględnienie planet typu ziemskiego daje zachowanie
chaotyczne z czasem Liapunowa ok 5 My (Laskar 1989,
Syssman i Wisdom 1992).

I Określanie trajektorii planet w okresie większym niż
kilkadziesiąt milionów lat ma charakter statystyczny
(niepewność położenia planet rośnie 10 razy na każde 10 My)


