Probing new territory with Gaia: fast optical transients

T. Wevers, P. Jonker and G. Nelemans

Radboud University

September 11, 2014
Very fast transients

- 10 4.4 s CCD integrations (AF)
- Subsequent FoV transit: 106.5 min
- Time between successive scans: 6 hours
Extending AlertPipe to very short timescales

- Nominal operation of AlertPipe: detection across 2 FOV
- Geared to 'traditional' transients: SN, CV, Novae, ...
- Previous efforts and experience in other surveys
- We know what to expect / what to look for!
Extending AlertPipe to very short timescales

- Nominal operation of AlertPipe: detection across 2 FOV
- Geared to 'traditional' transients: SN, CV, Novae, ...
- Previous efforts and experience in other surveys
- We know what to expect / what to look for!

- Very short events (within FOV transit) are likely to be missed
Goal

Detecting and characterizing extremely short astrophysical transient events
Goal

Detecting and characterizing extremely short astrophysical transient events

1. Limit the amount of rubbish in alertstream
2. Identify instrumental artifacts / systematics
3. Detect genuine transients
4. Acquire data needed for characterization
Classical picture (taken from LSST science book):
Ground-based efforts?

- Short integration times: noisy data
- Limiting atmospheric effects
- Small area coverage / shallow depth
- Extremely large amount of pixels to get good coverage with reasonable sampling
Ground-based efforts?

- Short integration times: noisy data
- Limiting atmospheric effects
- Small area coverage / shallow depth
- Extremely large amount of pixels to get good coverage with reasonable sampling
- Gaia provides high-quality photometry, colors, low res. spectra, all-sky
Rate of rise vs. t_{rise}

Limiting sensitivity for $\Delta \text{mag} = 0.5$
Some examples: TDFs around IMBH

- Star enters tidal radius of BH: differential gravity leads to disruption

Typical timescale for a disruption (Lodato & Rossi, 2011):

$$t_{peak} \sim 41 \times m_{star}^{-1} \times r_{star}^{1.5} \times M_{BH,6}^{1/2} \text{ days}$$ (1)
Some examples: TDFs around IMBH

- Star enters tidal radius of BH: differential gravity leads to disruption

Typical timescale for a disruption (Lodato & Rossi, 2011):

\[t_{\text{peak}} \sim 41 \times m_{\text{star}}^{-1} \times r_{\text{star}}^{1.5} \times M_{BH,6}^{1/2} \text{ days} \]

(1)

For a 0.6 \(M_\odot \) WD:

- 60 - 1800 sec for \(M_{BH} \sim 100 - 10^5 M_\odot \)

Not visible around SMBH!
Some examples: TDFs around IMBH

TDF of a 0.6 M_\odot WD

- $10^2 M_\odot$ BH
- $10^3 M_\odot$ BH
- $10^5 M_\odot$ BH

νF_ν (erg/s) vs. Time (days)
Some examples: compact binaries

- Double degenerate systems with periods \sim minutes - hours - days
- 3 flavours: interacting (AM CVn) - detached - non-interacting
- Potential GW sources, SNIIa progenitors
- Current population ≤ 100
Some examples: compact binaries

- Double degenerate systems with periods \sim minutes - hours - days
- 3 flavours: interacting (AM CVn) - detached - non-interacting
- Potential GW sources, SNIa progenitors
- Current population ≤ 100
- Estimated number of detectable systems with Gaia $\sim 10^4$
- Eclipses can be of order 10s of seconds: within single FOV transit
Some examples: compact binaries
Some examples
Instrumental calibration

- Extremely sensitive to instrumental/astrophysical contamination
- Characterization of instrumental imprints on data, such as:
 - Bad column / pixel maps
 - CCD edge artifacts
 - Influence of gating on source detection
 - Moving objects / bright stars / ...
Selection criteria

- Start with restricted parameter space, expand later
- Rise / decay with threshold magnitude / rate of change
- Outlier detection
- External triggers
Characterization of events

- Very short timescale makes follow-up challenging / impossible
- We have extra Gaia info: spectra + colors
- X-matching with multi-wavelength archival data
Characterization of events

- Very short timescale makes follow-up challenging / impossible
- We have extra Gaia info: spectra + colors
- X-matching with multi-wavelength archival data
- Look for other ways of gathering extra information
- E.g. commensal radio / X-ray observations
Potential overlap with CU7 (for e.g. DWD eclipses)

A non-significant fraction will not be detected as periodic variables!
CU7 overlap: defining transient / variable phenomena

- Potential overlap with CU7 (for e.g. DWD eclipses)
- A non-significant fraction will not be detected as periodic variables!
- What is the definition of a transient event?
Potential overlap with CU7 (for e.g. DWD eclipses)

A non-significant fraction will not be detected as periodic variables!

What is the definition of a transient event?

It is good to have some overlap for maximum science return

Coordination / communication is important!
Summary

- Use Gaia to probe (virtually) unexplored phase space in optical
- Known knowns, unknown knowns, unknown unknowns!
- AM CVn, TDF around IMBH, ???
- Create additional filter/class in AlertPipe
- Think about selection criteria, characterization etc.
- Some work needed on instrumental characterization
T. Wevers

Very fast transients

September 11