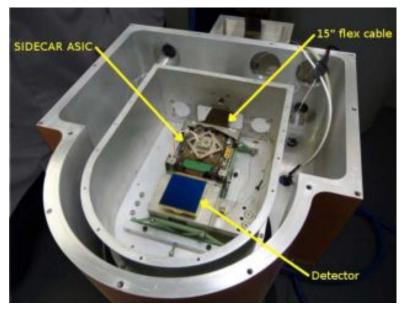
IO:I - A new(ish) NIR imager for the Liverpool Telescope

IO:I - A new(ish) NIR imager for the Liverpool Telescope

Why?

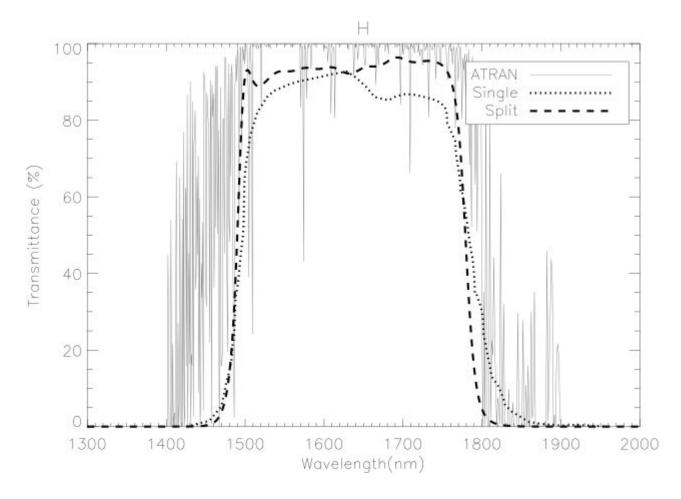

- Extend capabilities of LT beyond optical
- Measurement of NIR light curves for SNe Ia
- Early time follow up of high-z GRBs
- Many more..

Instrument Overview

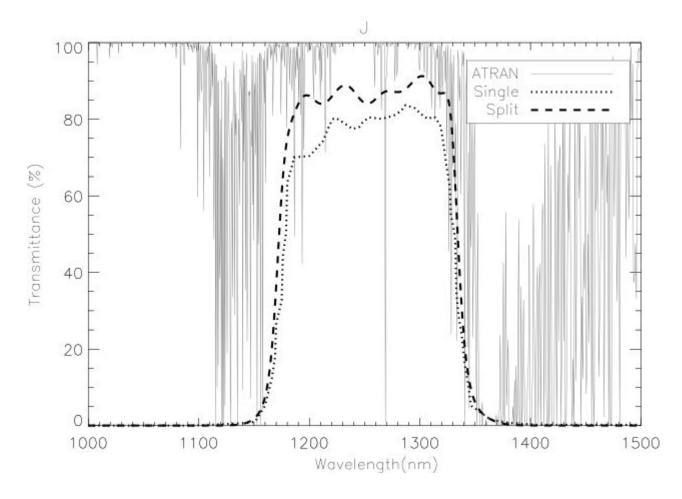
Hawaii-2RG (H2RG), SIDECAR and JADE2 from

Teledyne

- Old SupIRCam dewar
- 1.7µm cutoff
- FOV of 6'x6'
- Single fixed filter (H)
- Minimum exposure time of 6s (w/ 1.4s RO)


Splitting the FOV

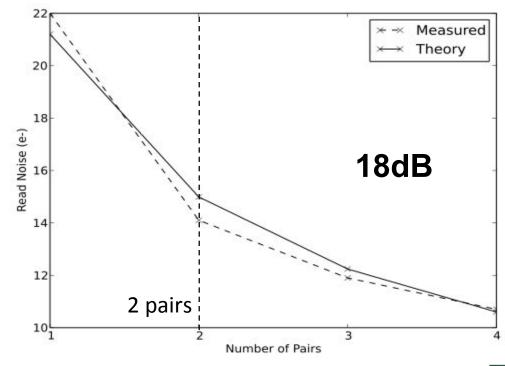
- Possibility, strength of science case permitting, of splitting the FOV between J&H
- Filters for this configuration already procured
- Changing filters requires instrument to be warmed up, taken off telescope temporarily, and cooled back down again with downtime of a few days


H Band (Single vs Split)

J Band (Single vs Split)

Measured Instrument Specification

	← RN −			- FWD
Table 1 A summary of IO:I	's charac	terisatio	n tests.	
Preamp Gain	12	15	18	21
Conversion Gain (e-/ADU)	3.05	2.12	1.50	1.06
CDS Read Noise (e-)	32.4	26.5	21.8	19
Uncorrected FWD 5% (ke-)	102	72	69	57
Corrected FWD 5% (ke-)	_	_	93	_
Vrefmain (V)	1.71	1.26	1.16	1.09
				100

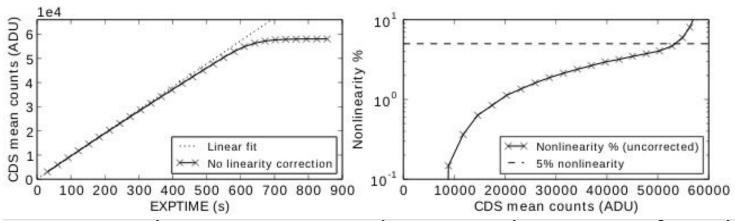


Fowler Sampling

 Number of fowler pairs chosen is compromise between read noise and quantity of data

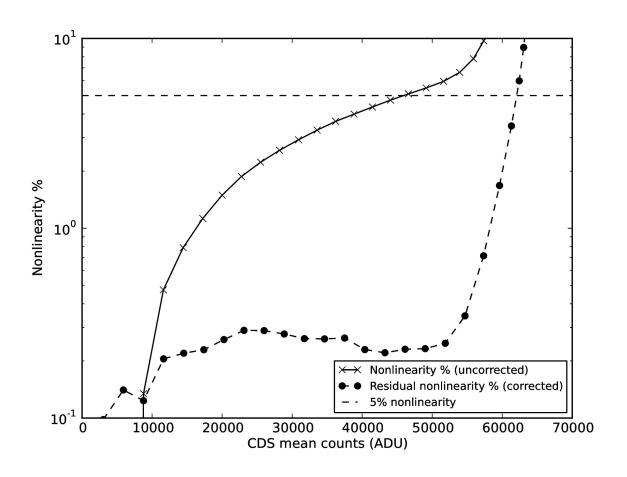
needing to be transferred from site

Measured Instrument Specification

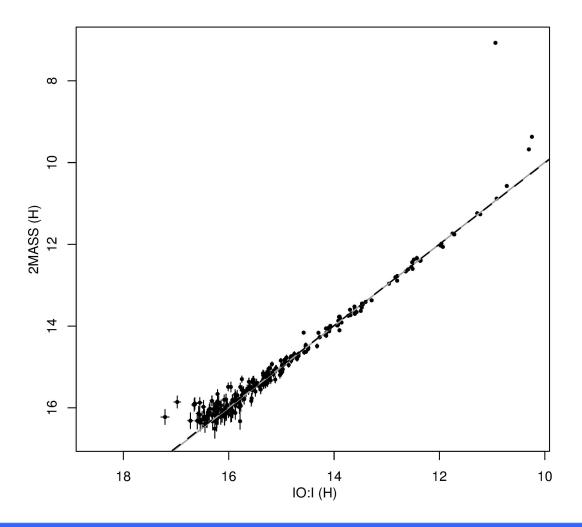

Table 1 A	summary	of IO:I's	characterisation	tests.
-----------	---------	-----------	------------------	--------

Preamp Gain	12	15	18	21
Conversion Gain (e-/ADU)	3.05	2.12	1.50	1.06
CDS Read Noise (e-)	32.4	26.5	21.8	19
Uncorrected FWD 5% (ke-)	102	72	69	57
Corrected FWD 5% (ke-)	_	_	93	_
Vrefmain (V)	1.71	1.26	1.16	1.09

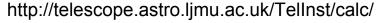
Nonlinearity Correction



- Intrinsic nonlinearity expected given architecture of pixel unit cell
- Corrected by creating a mapping between the observed and expected counts, the latter of which is derived by extrapolation of the integration slope at early times


Nonlinearity Correction

Nonlinearity Correction (On Sky)



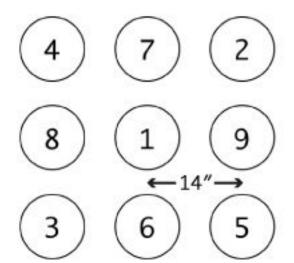
Sensitivity and Sky Background

- Measured sky bg of 12.45 mags/arcsec^2
- Depends on observing strategy, but as an example, a 30s single dither of a 14th magnitude target yields a SNR of 100

		IMAG	ING Expos	ure Time C	alculator		
Instrument:	IO:I ▼ Magnitude:		14				
Binning:	1x1	•		SNR:	100		
Filter:	H (IO:I)	•			Calcula	te	
Sky Brightness		1.0 arcsec	1.5 arcsec	2.0 arcsec	3.0 arcsec	4.0 arcsec	per sqr arcsec
Dark		27	59	103	229	406	8

Pipelining

- Pipeline performs autonomous:
 - i) reference subtraction
 - ii) frame combination (Fowler)
 - iii) nonlinearity correction
 - iv) flatfielding
 - v) bad pixel masking
 - vi) sky subtraction (watch for extended objs / crowded fields!)
 - vii) registration
 - viii) stacking


Sky Subtraction

- Currently median-of-peers (all dither positions except current frame being subtracted) used to generate sky frame
- A variety of more robust M-Estimators were investigated (HuberT, Tukey's Biweight) but found to either give an incorrect estimate of the sky value, or produce artefacts in the extraction that were not "user friendly", even though they may have yielded a more statistically favourable result

Dither Pattern

Single frame (1 of 4)

Linearity Corrected

Fowler 2-pair

Flatfielded

Bad Pixel Masking

Sky Subtracted

All dither positions

Registered and Stacked