

Transient follow-up with the Liverpool Telescope

Chris Copperwheat

Liverpool Telescope group:

Robert Barnsley, Stuart Bates, Neil Clay, Jon Marchant, Chris Mottram, Helen Jermak, Andrzej Piascik, Robert Smith, Iain Steele

dream plan achieve

2-metre fully robotic telescope located at the ORM on La Palma

Common-user facility

- In semester 2016A (Jan Aug):
 - 280 hours for internal use by Liverpool JMU staff
 - 280 hours available for UK users through PATT
 - 150 hours for Spanish users through CAT
 - 50 hours CCI international time
 - Up to 50 hours OPTICON
 - 150 hours for education via National Schools Observatory (http://www.schoolsobservatory.org.uk)
 - 90 hours pre-purchased by individual projects (e.g. Gaia tracking)

Gaia tracking

Gaia is imaged by the LT ~nightly in order to precisely determine its position, which informs the astrometric calculations

IO:O (optical)

- Our work-horse imager
- 4096 x 4112 pixel e2v CCD
- Filters: u'g'r'i'z' + BV + 5 H α 's
- Pixel scale: 0.15 arcsec
- FOV: 10 x10 arcmin
- Readout time
 - 37 sec (1x1 binning)
 - 13.5 sec (2x2 binning)

LT Instruments

IO:I (near-IR)

- 2048 x 2048 Hawaii-2RG array (1.7µm cutoff)
- J, H, or J+H split *BUT* fixed filter (i.e. no filter wheel – would require new cryostat)
- Pixel scale: 0.18 arcsec
- FOV: 6 x 6 arcmin

RISE

- 1024x1024 px frame-transfer CCD
- >0.8 sec exposures; no readout overhead
- Fixed "V+R" filter
- Pixel scale: 0.54 arcsec
- FOV: 9.2 x 9.2 arcmin FOV

LT Instruments

RINGO3 (polarimeter)

- Rotating polaroid; two dichroics
- Three 512x512 pixel EMCCDs
 - Red: 760-1000 nm
 - Green: 650-750 nm
 - Blue: 350-640 nm
- Pixel scale ~0.47 arcsec
- FOV ~ 5 arcmin

FRODOspec

- Dual-beam fibre-fed IFU
- R~ 2500:
 - λ range 390-570 + 580-940 nm
- R~ 5000:
 λ range 390-510 + 580-800 nm
- 12x12 lenslet arrays
- Pixel scale: 0.82 arcsec
- IFU FOV: 9.8 arcsec

LT Instruments

SPRAT

- Long-slit optical spectrometer
- Slit and grism deployable
- R ~ 350; λ range 400-800 nm
- Slit width: 1.8 arcsec
- Pixel scale: 0.44 arcsec
- Acquis. FOV: 7.5 x 1.9 arcmin

FRODOspec red CCD upgrade

Left: Throughput curves. Right: on-sky comparison of spectrophotometric standard

LT Instrumentation: relative usage

LOTUS

- Low resolution optical- near UV spectrograph
- Very simple, low cost: no moving parts
- R~300: λ range 320 630 nm
- 2.5" and 5" slit widths
- Pixel scale: 0.6 arcsec

LT Instrumentation

Skycams

- Skycam-A: Oculus all-sky camera with a fisheye lens; stars down to ~6th mag
- Skycam-T: Medium field 85 mm lens;
 9° field; 32" pixels; down to ~13-14th mag
- Skycam-Z: Zoomed Orion optics AG8 telescope; 1° field; 3"/pixel; down to ~18th mag
- Skycams T and Z: Andor ikon-M DU934N-BV
- No filters; CCD QE from ~400-800 nm

Huge database of wide field data, available to users

Proposed instrumentation: MOPTOP

- A Multiwavelength OPTimized Optical Polarimeter for time domain astrophysics
- Application for funding submitted to RS Paul Instrument Fund for start 04/2016

- Fast rotating element for high time resolution
- Deployable dichroics for simultaneous measurement in two colours
- Dual-camera configuration: 's' and 'p' polarization states on separate cameras to minimize systematic errors and provide highest possible sensitivity
- 1% polarization accuracy for V=18.5 over full 8' FoV
- sCMOS detectors: rapid readout, low read noise, higher sensitivity than EMCCDs

Proposed instrumentation: RISE3

- RISE3 a 3-colour rapid-readout instrument for transits, occultations and possibly GRBs. RINGO3-like design with dichroics and three CCD cameras
- Poll of users:
 - Multi-camera affair preferred to filter wheel likely to be more stable, and affords simultaneous photometry (GRBs?)
 - Field of view important: would be limited to about 13 arcmin by tertiary mirror (though this could be replaced).
 - PSF and thus pixel scale/sampling not important: most users will defocus to minimise flat-fielding errors.
 - Super-fast frame rate not vital: roughly 1 image/second probably good enough for most users.
 - Zero dead time a must.
- If MOPTOP proposal is successful, RINGO3 EMCCD detectors could be repurposed for this project, significantly reducing the cost

Robotic Control System

Scheduler decision-making based on:

- 1. Proposal science priority (A, B or C).
- 2. Repeat observations have a higher priority than one-off observations.
- 3. Urgent observations have a higher priority.
- 4. Ratio of current elevation versus highest possible elevation that night.
- 5. Matching of actual (seeing/lunar) conditions to those requested (*night is designated photometric or non-photometric at start by duty officer*).

Calibrations:

- Standards:
 - Observed every ~3 hours; sets for *photometric* and *non-photometric*
 - Spectrophotometric standards with all three spectrographs
 - Background standards used for monitoring when *no science groups* available (rare).
- Twilight flats obtained most mornings/evenings.

RTML submission of observations (ToO)

RTML – form of XML; allows users to communicate directly with software running on the telescope

<u>One Way:</u>

• only allow details of an observing request (RA, Dec, filter, texp) to be sent to the telescope via an RTML message from the user.

<u>Two Way:</u>

• upload observing request but also send back info to the user, e.g. observation complete, data available at this URL, etc.

Currently, we either supply users with a command line utility or we set up a (bespoke) web page for them to fill in. Both allow the user to send RTML messages to the Telescope Node Agent (TEA).

Two flavours of RTML submission:

- *Immediate override* e.g. GRBs
- Load into Telescope Phase2 e.g. Microlensing.

Mirrors realuminised this summer

- Primary, secondary and Skycam-Z mirrors all recoated using ING facilities
- First time the secondary has been treated: originally coated with a protective silicate layer which was difficult to remove safely
- The man who applied the layer (David Jackson, retired) was flown out to remove it!

Remarkable throughput increase, particularly at the blue end

Proposals by science area (15B)

Proposal Science Areas (15B)

LT Science

A Recurrent Nova in M31

(Darnley, Williams, Bode et al. 2014)

- LT being used to monitor a recurrent nova with an unprecedented 1 year inter-eruption timescale (is typically 10-100 yrs)
- Discovered in 2008; White dwarf + Red Giant/Super Giant binary...
- Outburst on 2nd Oct. 2014 discovered at the LT!

TOP: Multi-colour imaging with IO:O. BOTTOM: Follow-up spectroscopy with SPRAT on 3rd, 4th, 5th Oct 2014 showing the tell-tale H, He and N lines of a 'He/N' nova in eruption

LT Science

GRB Monitoring -Polarisation

(Mundell, Kopac, Arnold et al. 2013, Nature)

- Rapid decrease in flux accompanied by decrease in polarisation BUT – polarisation angle remains constant implying stable magnetic field surrounding GRB jet.
- Rapid-response polarimetry monitoring of GRBs continues...

TOP: Polarisation position angle. MIDDLE: Percentage Polarisation. BOTTOM: Flux density.

LT Science

BE/Black Hole binary system discovered with FRODOspec

(Caseres et al. 2014, Nature)

- Spectroscopic monitoring and modelling indicates the companion of the Be star is a 3.8-6.9 solar mass Black Hole.
- Be-star companion usually a neutron star; first time a BH has been observed in such a system

ABOVE: Trailed intensity images showing orbital evolution of emission lines through two orbital cycles.

Transient follow-up: CVs

e.g. ASAS-SN15nv

1500s SPRAT spectrum of V~17.5 object showing characteristic double-peaked lines of H-rich CV

The Future: Liverpool Telescope 2

- 4 metre optical telescope; commissioning in early 2020s; sited in La Palma
- Rapid follow up of transients from LSST and other facilities; GRB afterglows, SNe on the rise, exoplanets, etc., but also new types of transients: GW sources, neutrinos, high energy (CTA) sources, etc.

The right time for a new follow-up telescope

TESS: launch 2017

PLATO: launch 2022

ALIGO/aVirgo full sensitivity 2022

> CTA completed ~2023

Gaia catalogue published 2020

LSST: science first light 2021

SKA phase 1 completed 2020

Summary

- The LT is a world-leading facility for time domain science
 - Flexible scheduling capability
 - Diverse instrument suite
- Telescope time available for UK and international users
- http://telescope.livjm.ac.uk
- http://www.facebook.com/liverpooltelescope
- LT2 is designed to be a major follow-up facility for the LSST era
 - Serious design work currently underway
 - Total cost ~ €23M
 - 10 per cent of project cost already obtained from Canarian government
 - Currently a partnership between IAC and LJMU: we welcome discussion with other potentially interested parties
- http://telescope.livjm.ac.uk/lt2/