Intermediate-mass black holes & Gaia science alerts' unique potential

Peter Jonker (SRON & RU) Thomas Wevers (RU & SRON) Francesca Onori (SRON & RU) Marianne Heida (SRON & RU)

Netherlands Institute for Space Research

Gaia Science Alerts Workshop, Liverpool Nov 10-14, 2015

Do IMBHs exist?

Occupation fraction depends on the nature of the seed BH

Ultra-luminous X-ray sources

Cartwheel galaxy

HST

Chandra

(Credit: NASA/STScI)

Imaging survey: 4m class telescopes WHT Spectroscopic follow-up: VLT, Keck, Gemini

Heida, Jonker, et al. 2014

ULX in NGC253

VLT/X-shooter

ULX in NGC253

2MASS Ks

ESO ISAAC K_s

Heida, Torres, Jonker, et al. 2015

Heida, Torres, Jonker, et al. 2015

Netherlands Institute for Space Research

RON

Heida, Torres, Jonker et al. 2015

Heida, Torres, Jonker et al. 2015

S RON Netherlands Institute for Space Research

Heida, Torres, Jonker et al. 2015

Candidate IMBHs hyper-luminous X-ray sources L_x≥3E40 erg/s

ESO 243-49 X-1, Farrell et al. 2009, Lasota et al. 2011 Composite

N10 Cartwheel; Wolter et al. 2006 M82X-1;Kaaret et al. 2001 other IMBH candidates: Mezcua et al. 2015; NGC2276 NGC5252; Kim et al. 2015

HLX2

$L_{x,peak}$ =2E41 erg s⁻¹

Heida, Jonker, & Torres 2015, MNRAS, ArXiv 1509.00329

Modified Julian Day

Jonker et al. 2010

IMBHs & tidal disruption events?

Tidal disruption events; X-ray

SRON XMM: e.g. Esquej+08; Maksym+10, 13, 14; Saxton+14; Feng+15; Lin+11, 15

Tidal disruption events; optical

S RON Netherlands Institute for Space Researc

Tidal disruption events & IMBHs

Tidal disruption of a WD by an IMBH

WD-BH encounter

masses (sol.) 0.2 (WD) & 1000 (BH) in. separation (in 1.E9 cm) 50 hydrodynamics SPH (4 030 000 particles) EOS, gravity Helmholtz, N nucl. burning red. QSE-network (Hix 98) 5.4 min simul. time color coded column density

12

SRON Netherlands Institute for Space Resear

coding, simulation, visualisation: S. Rosswog

penet. factor

Rosswog, Ramirez-Ruiz, Hix 2009

Nuclear (?) event

Data courtesy Lukasz Wyrzykowski

Tidal disruption events & IMBHs

S RON Netherlands Institute for Space Research

Figure courtesy Sjoert van Velzen

Tidal disruption events & IMBHs

Nuclear Type ~Ia

S RON Netherlands Institute for Space Resea

a.o. Luminet & Pichon 89; Rosswog et al. 08 & 09

Nuclear Type ~Ia

Nuclear Type ~Ia

Are there WD TDEs?

SDSS

S RON Netherlands Institute for Space Researc

Detection of a fast X-ray transient

SRON

 $F_{\text{peak}}(0.5-10 \text{ keV}) = 2x10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1}$ Jonker et al. 2013, ApJ

Precursors to the transient

Jonker et al. 2013, ApJ

WD orbits IMBH

Macleod et al. 2014 (and refs therein)

More fast X-ray flashes:

Glennie, Jonker, et al. 2015, MNRAS

More fast X-ray flashes:

reported in ATel #6541:Luo et al. 2014

Conclusion:

Capitalize on Gaia strenghts: fast, virtually simultaneous spectroscopy & diffraction limited imaging

Gaia-discovered tidal disruption events will be a great tool to search for intermediate-mass black holes

OGLE found some peculiar (nuclear) Type la's what are they?

