LSST Transient Alert Production Pipelines

David J Reiss
for the LSST Data Management team
LSST DM at University of Washington, Seattle, USA

Gaia Science Alerts Workshop
Liverpool, Nov. 2015
Deep, wide, fast: Pick any three

- **Deep:**
 - 8.4m (~ 6.5m effective)
 - 10 years
 - ~ 825 visits total
 - \(r \approx 24.5 \) /visit; \(r \approx 27.5 \) total
 - ~ 0.67” seeing
Deep, wide, fast: Pick any three

- **Wide:**
 - 18,000+ deg²
 - 6 bands (ugrizy)
 - 3.2 gigapixel camera
 - ~10 deg² field of view

- (189 x 16Mpix CCDs)
Deep, wide, fast: Pick any three

- **Wide:**
 - 18,000+ deg²
 - 6 bands (ugrizy)
 - 3.2 gigapixel camera
 - ~ 10 deg² field of view

- **Fast:**
 - 2s readout, 5s slew
 - 2 x 15s exposures per visit
 - entire sky imaged 2x, ~ every 3 nights
 - ~ 2.5 million visits total

- **Deep:**
 - 8.4m (~ 6.5m effective)
 - 10 years
 - ~ 825 visits total
 - $r \sim 24.5$/visit; $r \sim 27.5$ total
 - ~ 0.67” seeing

![Diagram showing 2x15s exposures and ~30 minutes intervals for Wide and Deep modes, with ~3 days between visits.]
Deep, wide, fast: Pick any three

- **Wide:**
 - 18,000+ deg2
 - 6 bands (ugrizy)
 - *3.2 gigapixel camera*
 - \sim 10 deg2 field of view

- **Fast:**
 - 2s readout, 5s slew
 - 2 x 15s exposures per visit
 - entire sky imaged 2x, \sim every 3 nights
 - \sim 2.5 million visits total

- **Deep:**
 - 8.4m (\sim 6.5m effective)
 - 10 years
 - \sim 825 visits total
 - $r \sim 24.5$/visit; $r \sim 27.5$ total
 - \sim 0.67” seeing
 - \sim 10 million transient alerts per night
 - Alerts distributed within 60s of visit

- **Diagram:**
 - 2x15s exposures, total time \sim 30 minutes
 - 2x15s exposures, total time \sim 30 minutes
 - 2x15s exposures, total time \sim 3 days
 - 2x15s exposures, total time \sim 30 minutes
Petascale Computing, Gbps Networks

Data products:
- ~ 20 TB/night
- ~ 37 billion objects
- ~ 30 trillion measurements
- ~ 100 PB total
- ~ 10 million transient alerts per night
- Alerts distributed within 60s

The computing cluster at the LSST Archive at NCSA will run the processing.

Redundant, Long Haul Networks to transport data from Chile to the U.S.
- 2x100 Gbps from Summit to La Serena (new fiber)
- 2x100 Gbps for La Serena to Champaign, IL (path diverse, existing fiber)
Three levels of LSST data products

- A stream of ~10 million time-domain events per night, detected and transmitted to event distribution networks within 60 seconds of observation.
- A catalog of orbits for ~6 million bodies in the Solar System.

- Annual data releases.
- Deep co-added images.
- A catalog of ~37 billion objects (20B galaxies, 17B stars), ~7 trillion observations (“sources”), and ~30 trillion measurements (“forced sources”), accessible through online databases.

- Services and computing resources at the Data Access Centers to enable user-specified custom processing and analysis.
- Software and APIs enabling development of analysis codes.
Level 1 Overview

- **Primary purpose:**
 - Satisfy science cases requiring rapid identification and follow-up (transients, fast-moving NEOs, etc.)

- **Transient science**
 - Nova, supernova, GRBs
 - Source characterization
 - Instantaneous discovery

- **Solar System Objects**
 - NEOs, PHAs

adapted from Kulkarni et al. (2007)
Alert Production: Pipeline overview

Raw visit (two snaps) → Template → Diffim → Detect → Measure → DIASource

(DIAObject record)

DIASource records → Association → DIAObject → SSOObject

Alert Packet → Transmit to event brokers → LSST Simple broker

Community Brokers
Level 1: Alerts

- State-of-the-art image differencing pipeline
- Alerts issued within 60 seconds of observation
- 10M/night (average), 10k/visit (average), 40k/visit (peak)
- Each alert includes:
 - Position
 - Flux, size, and shape
 - Light curves in all bands (up to a ~year; stretch: all)
 - Variability characterization (e.g., low-order light-curve moments, probability that the object is variable)
 - Cut-outs centered on the object (template, image difference)

 - LSST Data Products Definition Document: http://ls.st/dpdd
Level 1 Processing: System Architecture
Level 1 Processing: System Architecture
Challenges and Progress

- Difference imaging algorithms
 - Error/noise propagation
- Template generation
 - Refraction
 - Flux dependent PSF
- Other sources of false-positives
 - Image simulations
- Many more…

Antilogus et al. 2014
Becker et al. Winter 2014 Report
In conclusion

LSST will:

- Commence survey operations in ~7 years
- Produce an unprecedented volume of transient alerts
 - Published to the worldwide community with low latency
- Generate annual data releases providing trillions of source measurements and petabytes of image data
 - Available to the US, Chile and international partners with no proprietary period
- Use and develop community standards for making data available wherever possible

How can you help us?
How can we help you?
Thanks from the entire LSST team.