▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Astrometric and photometric microlensing with Gaia and OGLE

Kris Rybicki

Warsaw University Astronomical Observatory

November 12, 2015

Astrometry

Results and summary

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Introduction

Photometry

Astrometry

Results and summary

Astrometry

Results and summary

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Introduction

Photometry

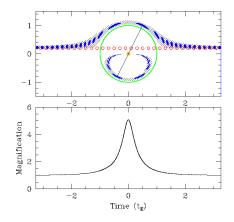
Astrometry

Results and summary

How does single stellar mass BH look like?

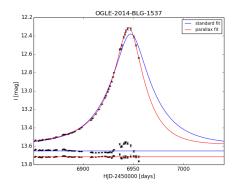
Astrometry

Results and summary


◆□▶ ◆□▶ ★□▶ ★□▶ □ の 0 0

Motivation

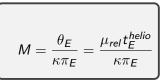
- According to IMF (Kroupa & Weidner 2003), about 0.5 promil of all stars should be BH
- Final stages of the evolution of masive stars not understood well
- Mass measurement of single BH hard (impossible?) to detect without microlensing


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Photometric and astrometric microlensing

image credit: Scott Gaudi

Microlensing parallax and mass



Parallax:

$$\pi_{rel} = \frac{1}{D_l} - \frac{1}{D_s}$$

$$\pi_{rel} = \theta_E \pi_E$$

Mass formula:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Astrometry

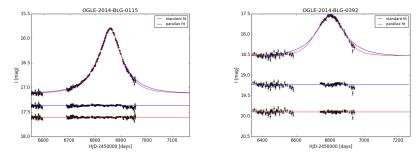
Results and summary

Introduction

Photometry

Astrometry

Results and summary


▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Events selection

- Long timescale: $t_{E_{std}} > 50$ days
- Gaia and OGLE observations overlap
- Parallax signal essential for mass determination
- Fit goodness

Lightcurve fits

 $t_0, t_E, I_0, f_s, u_0, \pi_{EN}, \pi_{EE}$: 7 parameters from parallax model!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Astrometry

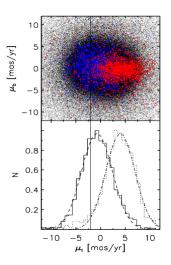
Results and summary

Introduction

Photometry

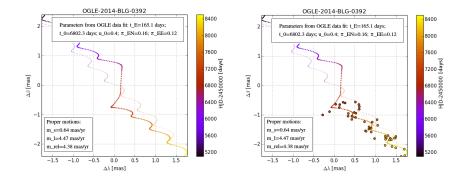
Astrometry

Results and summary


▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

Astrometry

Results and summary


Proper motions

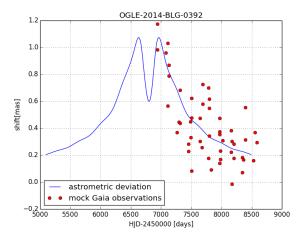
- PM bulge and disc distributions (Calamida et al. 2014)
- Proper motions: μ_{lens} and μ_{src}
- $\frac{\pi_{EN}}{\pi_{EE}} = \frac{\mu_{rely}}{\mu_{rel_x}}$
- *D_s* = 8*kpc*!!
- We could stop now: Wyrzykowski et al. 2015

・ロト ・ 個 ト ・ ヨト ・ ヨト

Generating trajectory and Gaia data simulations

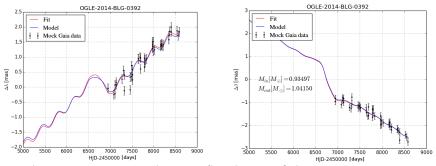
Astrometry

Results and summary


▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Gaia performance

$G \;[\mathrm{mag}]$	3 - 12.09	13	14	15	16	17	18	19	20
$\sigma_0 \; [\mu as]$	5.0	7.7	12.3	19.8	32.4	55.4	102	208	466
σ_{ϖ} [µas]	6.7	10.3	16.5	26.6	43.6	74.5	137	280	627
$\sigma_{\mu} \ [\mu as \ yr^{-1}]$	3.5	5.4	8.7	14.0	22.9	39.2	72.3	147	330


Figure: Gaia astrometric science performance - post-launch predictions (J.H.J. de Bruijne 2015)

Absolute shift vs t

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Fitting trajectory

Only proper motions values are fitted, rest of the parameters are assumed to be known from the lightcurve!

Astrometry

Results and summary

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Introduction

Photometry

Astrometry

Results and summary

M_{in} vs M_{out}

OGLE-2014-BLG-0912 0.14 10 0.12 8 0.10 $M_{\rm out}[M_\odot]$ 6 N^{norm} 80.0 0.06 4 0.04 2 0.02 0.00 2 8 10 4 6 $\rm M_{in}[M_{\odot}]$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

*Parallax from space

◆□▶ ◆□▶ ★□▶ ★□▶ □ の 0 0

Summary

- Having empirical distributions of proper motions we can derive probability function for lens mass
- With Gaia astrometry and OGLE photometry it will be possible to measure mass of the lens
- Measurement of space parallax may be possible with Gaia

The only way to derive masses of single, dark stellar remnants like neutron stars or black holes