

Son Of X-Shooter at NTT

Massimo Turatto

Osservatorio Astronomico di Padova

(thanks to Sergio Campana, PI of SOXS)

Massimo Turatto

GSA Cambridge 2011 (Gaia) Supernovae: overview & follow-up

Requirements for (spec) monitoring

- flexible: prompt classification & adaptive scheduling
- broad wavelength range (realistically from atmo cut-off to NIR)
- broad band photometry & low-intermediate-res spectroscopy
- Homogeneity: few, well characterized instrumentation
- (both hemispheres)

THE solution:

MT's "chiodo fisso"

XShooter-like instrument (+ imaging) on a 4m-class telescope (Photom by Opt-NIR camera on a 2m-class robotic telescope)

Requirements for (spec) monitoring

- flexible: prompt classification & adaptive scheduling
- broad wavelength range (realistically from atmo cut-off to NIR)
- broad band photometry & low-intermediate-res spectroscopy
- Homogeneity: few, well characterized instrumentation
- (both hemispheres)
 - robotic telescopes (also for spectroscopy!)
 - → "ad hoc" follow-up instrumentation

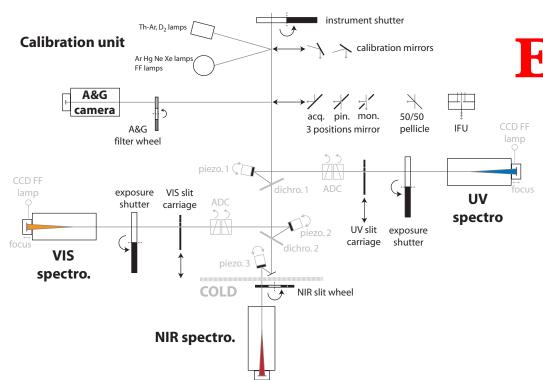
.

THE solution:

MT's "chiodo fisso"

XShooter-like instrument (+ imaging) on a 4m-class telescope (Photom by Opt-NIR camera on a 2m-class robotic telescope)

.


Report of the European Telescope Strategy Review Committee on Europe's 2-4m Telescopes over the Decade to 2020 (2010)

Emphasis on:

- Wide lambda coverage (0.4-2.4mu, at least 1.7mu)
- Override RRM/ToO mode
- 1 north + 1 south

Table 3: A list of identified capabilities that are incompletely/not met, requiring action. Suggestions for remedies and associated timescales are given in column 3.

Capability		Explanation		
ID & hemisphere/aperture		problem	timescale/remedy	
1-1: $R \sim 5000$ optical N/4m		WHT/WYFFOS	~2015 on a 4-m	
wide-field	· '	multiplex +		
spectrograph		unvignetted field		
		inadequate		
	S/4m	none available	new VISTA sp'graph	
			after nir surveys	
1-2: $R > 20000$ optical	N/4m	not available –	gain early S	
wide-field		needs 2-deg corrector	experience (below);	
spectrograph			combine with 1-1	
			capability	
	S/4m	(as north)	AAT/HERMES buy-in	
			and/or VLT/FLAMES use	
			preparatory to new	
			build	
2-1: highly stable	N/4m	HARPS-NEF private,	alternative from	
$R \sim 10^5$ optical		temporary, uncertain	end of MOU	
echelle sp'graph			(Mauna Kea pref.)	
2-3: $R \sim 70000 \text{ nir}$	either/4m	closest matches	~2015: support	
echelle (with		SPIRou, CARMENES	SPIRou or	
spectropolarimetry)	G / 4	not confirmed	CARMENES	
3-1: 500 < R < 5000	S/4m	ageing EFOSC2,SOFI:	upgrade needed	
opt+nir spectroscopy		prospect of no	by 2015	
		2-4m sp'graph of the class in the south		
	NI /Amo		now build for 2015	
N/4m		no northern son-of-X-shooter	new build for 2015+	
4-1: wide-field	NI / Amo	DULK OF THE DIROUGE	1 deg2 comence	
	N/4m	northern cameras	1 deg ² camera on 4-m from 2015	
nir imager		have < 0.25 deg ² FoV UKIDSS loss	4-III IrOIII 2015	
		OKIDSS IOSS		

ESO X-Shooter

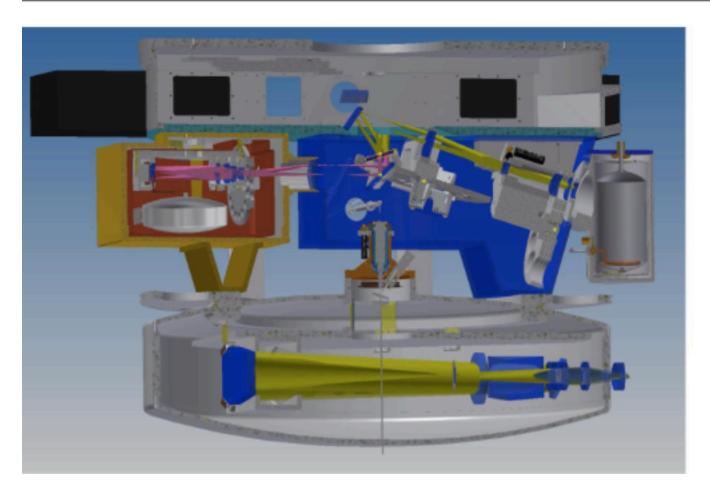
UVB, range 300-559.5 nm VIS, range 559.5-1024 nm NIR, range 1024-2480 nm

UVB			VIS				NIR		
Slit width Resolution Sampling		Slit width	Resolution	Sampling	Slit width	Resolution	Sampling		
(")	$(\lambda/\delta\lambda)$	(pix/FWHM)	(")	$(\lambda/\delta\lambda)$	(pix/FWHM)	(")	$(\lambda/\delta\lambda)$	(pix/FWHM)	
0.5	9100	3.5	0.4	17400	3.0	0.4	11300	2.0	
0.8	6300	5.2	0.7	11000	4.8	0.6	8100	2.8	
1.0	5100	6.3	0.9	8800	6.0	0.9	5600	4.0	
1.3	4000	8.1	1.2	6700	7.9	1.2	4300	5.3	
1.6	3300	9.9	1.5	5400	9.7	1.5	3500	6.6	
IFU	7900	4.1	IFU	12600	4.2	IFU	8100	2.8	

Band	U	В	V	R	I	J	Н	K'
mag	21.5	21.7	21.7	21.6	21.2	20.5	20.8	19.3

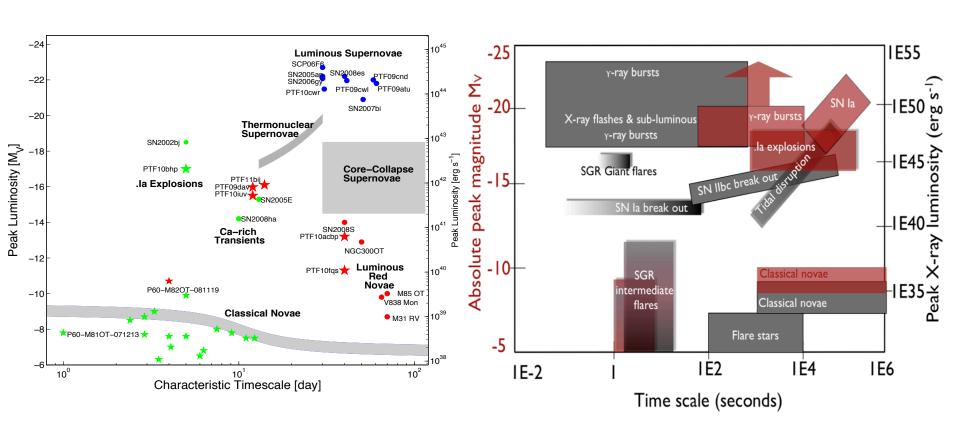
Continuum spectrum S/N=10 - 1 hr exposure

NOT Transient Explorer – A new work-horse for the Nordic Optical Telescope


- A cross-dispersed spectrograph **covering 350-1700 nm, resolution ~4000** (possibly with also a higher-res mode), **single slit** (with different choices for the slit width), including ADC and efficient enough to be sky-limited in 30 min integration.
- Visible imager with 5-6 arcmin FOV, 2k x 2k detector, sampling 0.15-0.18 arcsec per pixel.
- Near-IR imager using a 2k x 2k HAWAII-II detector with same FOV and sampling as in the visible.
- De-scoped version: imaging reduced to a visible slit-viewing camera with FOV of 3 arcmin (similar to StanCam).

Nordic (Denmark Sweden, etc.) + Italian collaboration

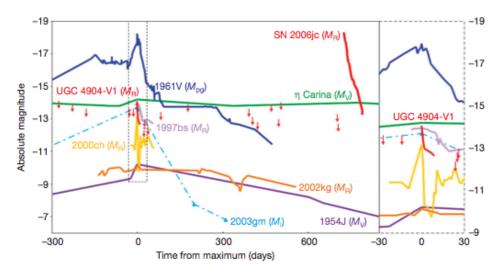
Table 1: Main characteristics of NTE spectrograph mode.


Wavelength coverage	0.32 – 1.77 μm
Spectral resolution	4,500
Slit length	20"
Pixel scale	~0.4"/pix
Optical/NIR wavelength crossover	0.76 μm
Average blaze peak efficiency	> 30%
Time to reach the sky limit	~15 min

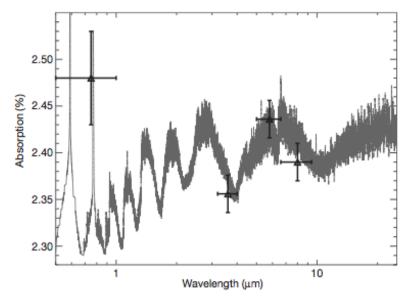
ESO's SOXS project

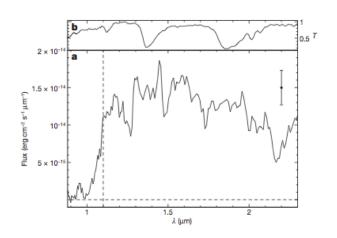
- ESO call for new instruments at NTT (06/2014)
- Proposal submission (02/2015)
- SOXS selected by ESO (05/2015) out of 19

SOXS Main Science case: the transient sky


Just a few science cases

- Minor planets and asteroids
- Young stellar objects
- Planetary transits
- X-ray binary transients
- Novae
- Magnetars
- Supernovae (Ia, CC)
- GRB
- TeV transients
- GW & neutrino EM counterparts
- Radio sky transients & fast radio bursts


Discovery space


First SN shock break out (GRB060218 /SN2006aj)

Major outburst 2 yr before the SN explosion (SN2006jc)

Water vapor in the atmosphere of a transiting planet

The most distant object in the Universe (at the time of discovery; GRB090427 z=8.2)

A working example

During 2005-2013 Nature published ~180 astronomical papers with more than 50 citations.

Among them 36% are on transients objects.

PESSTO

An already working example

- ~20% of selected candidates from SN searches enter into the observing queue
- ~ 50% of the transients are eventually observed and classified
 90% remain unclassified

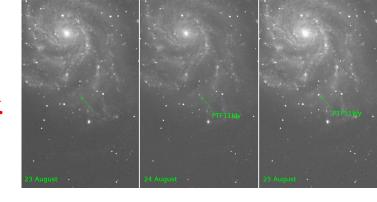
DN (U Gem) (except rare big flares)

GAIA Transient Alerts

500 (?)

gal. plane

GAIA is coming


alerting object	5-yrs (Entire Mission)	main location
Supernovae <19 mag	6000	out of plane
Microlensing (bulge)	~1000	bulge/plane
Microlensing (all sky)	~700	out of plane
GRB optical counterparts	~hundreds (?)	out of plane
R CrB-type stars	~hundreds (?)	gal. plane
CN	150	gal. plane
FU Ori	14	gal. plane
Eclipsing binaries	a million (?)	gal. plane
AGNs	500,000 (?)	out of plane
Asteroids	thousands (?)	out of plane
Be stars	thousands (?)	gal. plane
Long period variables/Miras	thousands (?)	gal. plane
M-dwarf flares	2000	gal. plane

interesting

contaminants(?)

Why SOXS

Spectroscopic machine for the transient sky.

Sexy:

2005-2013 Nature published ~180 astronomical papers with > 50 citations.

Among them 36% are on transients objects.

Needed:

Now (PESSTO, Asiago, ... in place) >70% of newly discovered transients without spectroscopic follow-up.

Near future many transient surveys:

- WF surveys (GAIA-alters, iPTF, DES, Pan-STARRS, LSST)
- high-energy transients (Swift, INTEGRAL, MAXI)
- GW-alters etc.

but very limited spectroscopic follow-up

SOXS @ NTT

Proposal to **build** and **operate** a spectrograph:

- wide spectral coverage (0.35-1.75 μm) on two arms
- good spectral resolution (**R~4500**)
- to characterize and follow-up in depth any kind of transient

A possible optical layout of the Common Path

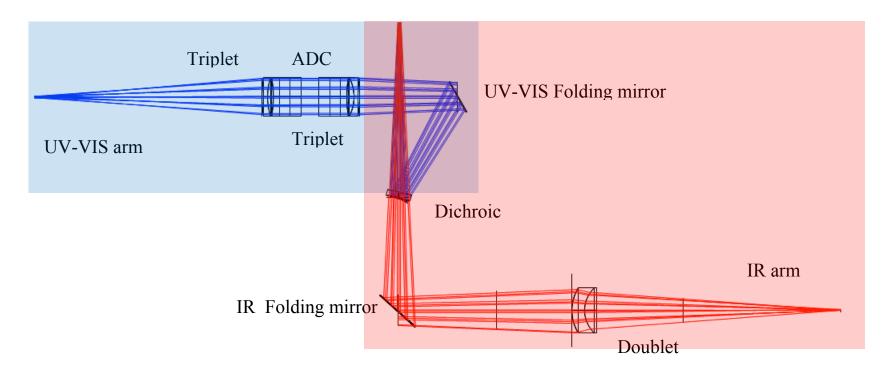
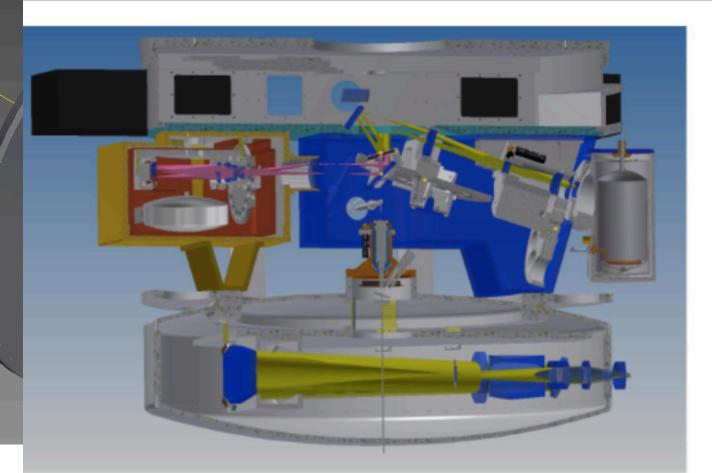
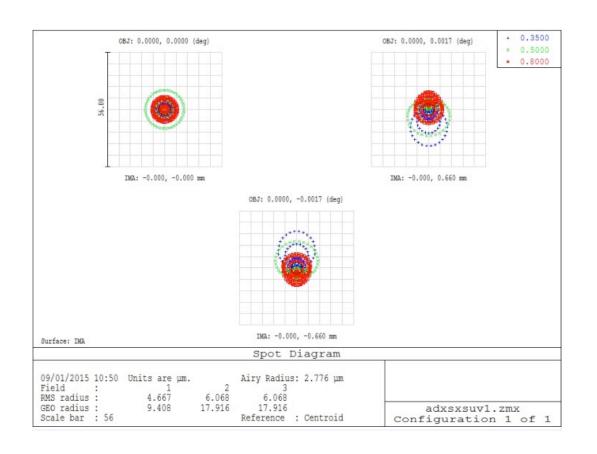
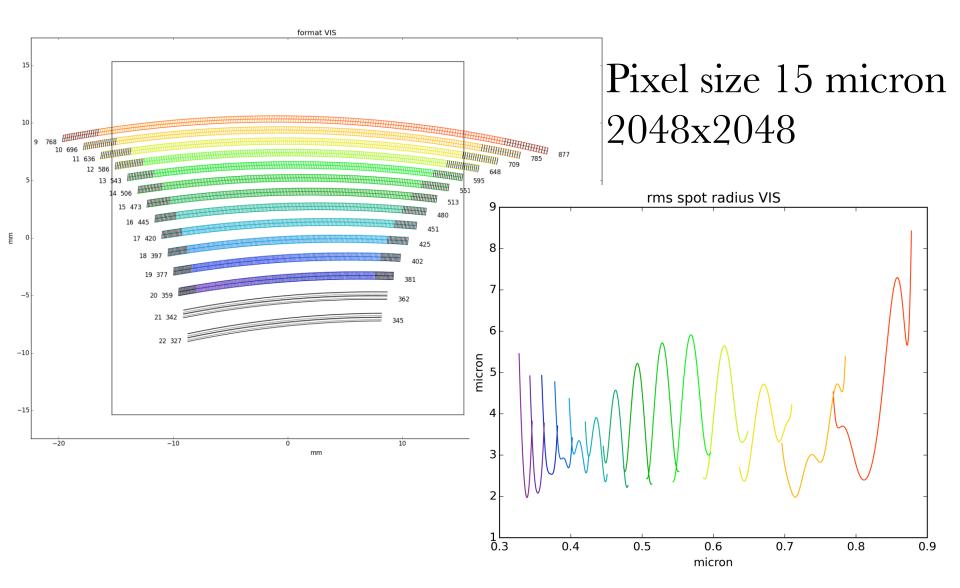




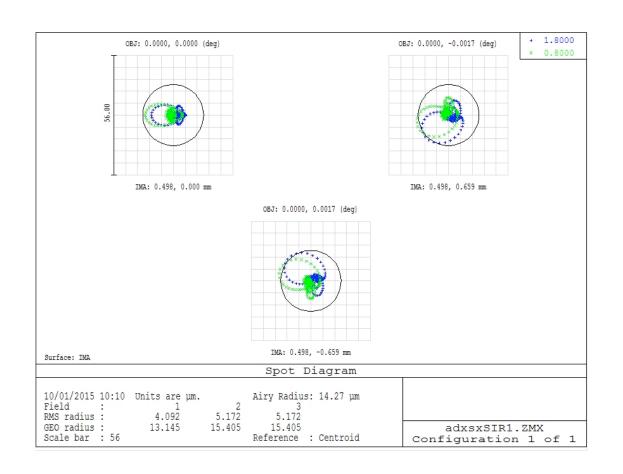
Table 1: Main characteristics of NTE spectrograph mode.

Wavelength coverage	0.32 – 1.77 μm
Spectral resolution	4,500
Slit length	20"
Pixel scale	~0.4"/pix
Optical/NIR wavelength crossover	0.76 μm
Average blaze peak efficiency	> 30%
Time to reach the sky limit	~15 min

Initial performances



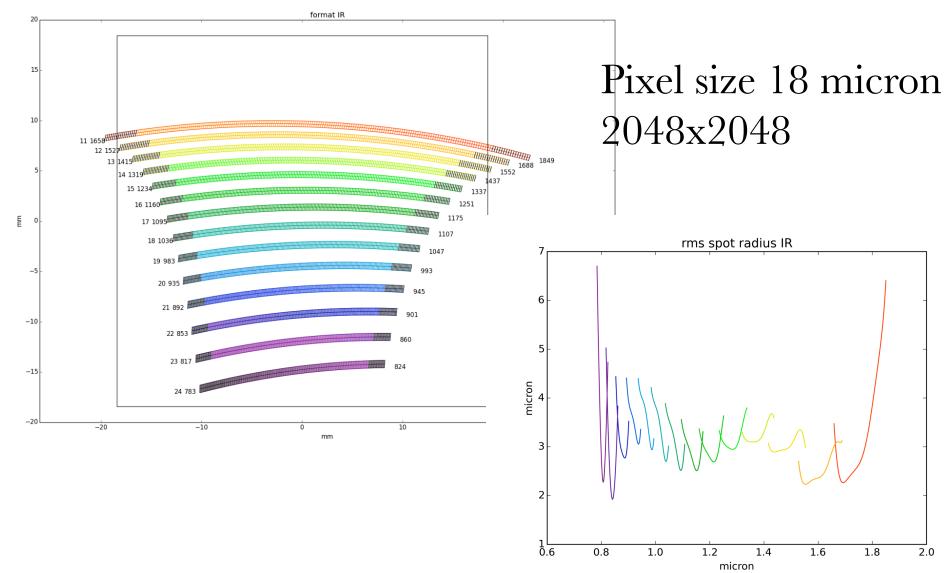
BLUE arm (0.35 to 0.8)


0.5 arcsec box

0 and ±12arcsec positions

BLUE spectrograph

Initial performances



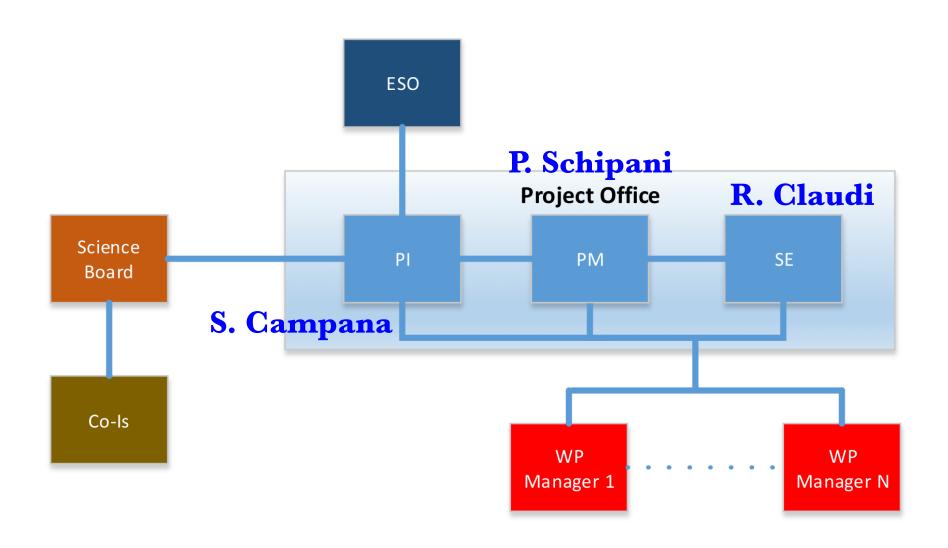
RED arm (0.8 to 1.8)

0.5 arcsec box

0 and ±12arcsec positions

RED spectrograph

SOXS performances


• Goal:

continuum spectrum $R\sim20-20.5$, S/N=10 in 1 hr

nicely matching the limiting magnitude of current (e.g. iPTF, GSA) synoptic surveys

"Extended" guiding camera to use as imaging (optical) instrument >3 arcmin FOV

Consortium structure

Science Board

- S. Campana (INAF-OABrera) Italy
- E. Cappellaro (INAF-OAPadova) Italy
- M. Della Valle (INAF-OANapoli) Italy
- A. De Ugarte Postigo (IAA-CSIS) Spain
- J. Fynbo (Dark-NBI) Denmark
- M. Hamuy (Millenium Inst.) Chile
- G. Pignata (Millenium Inst.) Chile
- S. Smartt (Univ. Belfast) UK
- S. Basa (LAM) France
- L. Le Guillou (LNPHE) France
- B. Schmidt (ANU) Australia
- M. Colles (ANU) Australia
- A. Gal-Yam (Weizmann Inst.) Israel
- S. Mattila (FINCA) Finland

Funds

>84% secured

Remaining to be approved by national agencies

Timeline 2016-2020

Project phase	Aprrox. start	Approx end	Duration
Phase A	12/2015	04/2016	5 months
Phase B	05/2016	10/2016	5 months
Phase C	11/2016	08/2017	10 months
Phase D	09/2017	12/2019	28 months
Phase E	12/2019	>2023	

Operations

ESO will reward the consortium with NTT GTO (likely ~150 n/yr for TBD years)

From 2018 at existing EFOSC2+SOFI then (mid-2019) at SOXS. (urgent GW, GSA, etc.)

Observers on-site for instantaneous response to alerts

Source class	Obs. Time	Key project & Aim
All	500 hr	Fast characterization of transients from other surveys
Open	$500 \mathrm{hr}$	Open time for spectroscopic ToO observations
Asteroids & TNO	200 <u>hr</u>	Characterization of populations of minor bodies, input to models of solar system formation and mitigation of impact hazard
Comets and new comets	$100 \mathrm{hr}$	···· /
Planetary transits	$200\mathrm{hr}$	Monitor of >5 bright stars for primary and secondary eclipses
Young stellar objects	100 hr	
Stars	100 hr	
X-ray binary transients	200 hr	Derive the mass function of >10 XRB transients in outburst
Magnetars	50 hr	Fast follow up of >10 magnetar's flares
Novae	100 <u>hr</u>	
ILOT	300 <u>hr</u>	
SN <u>Ia</u>	$500 \mathrm{hr}$	Statistical sample of > 150 SNe Ia in the low-z Universe to study
		the local properties and dust extinction
CC-SN	$500 \mathrm{hr}$	
Super-luminous supernovae	$500 \mathrm{hr}$	Build a statistical spectroscopic sample of SLSN
Prompt GRB	100 <u>hr</u>	Fast spectroscopy of >50 GRBs to probe the galaxy host medium
High-z (z>5) GRB	$50\mathrm{\underline{hr}}$	Transmission spectra of >5 high-redshift GRBs
GRB- <u>SNe</u>	$100 \mathrm{hr}$	Follow the evolution of >5 SN associated to nearby ($z<0.3$) GRBs
Active galactic nuclei	$200\mathrm{hr}$	
and blazars		
Tidal disruption events	100 <u>hr</u>	•
Gravitational Wave triggers	$200\mathrm{hr}$	Spectroscopic follow up of candidate GW counterparts. This
		includes kilonovae from short GRBs.
Neutrino triggers	$100 \mathrm{hr}$	Spectroscopic follow up of candidate neutrino counterparts
Unknown	$300 \; \mathrm{hr}$	

Data policy

<5% of the consortium time open to the community as fast ToO (Swift-like) observations (public data)

Relevant information (redshift, peculiar sources, etc.) announced in real time through GCN, ATEL, IAUC, etc.

Consortium data public after a short (1-3 months TBD) proprietary period.