

CATCHING GRB ORPHAN AFTERGLOWS FROM GAIA TRIGGERS

S.D. Vergani & collaborators

Special thank to: J. Japelj & G. Ghirlanda

GAMMA-RAY BURSTS

Ultra-relativistic jets associated with black holes formation merging of compact objects massive star explosion

LGRBs / CCSNe connection

LONG GRBS ASSOCIATED WITH SNTYPE IC-BL

LONG GRBS ASSOCIATED WITH MASSIVE STARS

 Study the disk / star-forming region gas

 Study the disk / star-forming region gas

at any z! (record holder z=8.2)

at any z! (record holder z=8.2)

- Study the disk / star-forming region gas
- Time variation of fine structure lines : gas cloud distances
- > 50pc (hard X-ray ionisation at smaller radii)

Courtesy of G. Ghirlanda

GAMMA-RAY BURST ORPHAN AFTERGLOWS

Norph ~ Ngrb(2/theta²)

~300 orphan afterglows for each on-axis GRB!

GAMMA-RAY BURST ORPHAN AFTERGLOWS

Expected Gaia light-curve

Survey	FOV	Cadence	Flim	Coverage	Lifetime	R _{OA}	$\langle T \rangle$	# OA
	(deg ²)		(mJy)	(deg ² night ⁻¹)	days	(deg ⁻² yr ⁻¹)	days	yr-1
PTF	7.8	1m-5d	1.17×10 ⁻²	1000		1.5×10 ⁻³	1[0.2-3.8]	1.5
ROTSE-II	3.4	1d	1.17×10^{-1}	450		5.2×10^{-4}	0.4[0.1-1.7]	0.1
CIDA-QUEST	5.4	2d-1yr	4.60×10^{-2}	276		8.0×10^{-4}	0.5[0.1-2.3]	0.1
Palomar-Quest	9.4	0.5h-1d	1.17×10^{-2}	500	2003-2008	1.5×10^{-3}	1[0.2-3.8]	0.8
SDSS-II SS	1.5	2d	2.68×10^{-3}	150	2005-2008	3.2×10^{-3}	1.6[0.4-6.3]	0.8
Catilina	2.5	10m-1yr	4.60×10^{-2}	1200		8.0×10^{-4}	0.6[0.1-2.4]	0.6
SLS	1.0	3d-5yr	5.60×10 ⁻⁴	2	2003-2008	5.2×10^{-3}	2.8[0.8-11]	0.03
SkyM apper	5.7	0.2d-1yr	7.39×10^{-2}	1000	2009	6.4×10^{-4}	0.5[0.2-2.0]	0.3
Pan-STARRS1	7.0	3d	7.39×10^{-3}	6000	2009	2.0×10^{-3}	1[0.3-4.4]	12
LSST	9.6	3d	4.66×10 ⁻⁴	3300	2022	5.1×10^{-3}	3[0.8-11]	50
Gaia	0.5x2	20d	3.00×10^{-2}	2000	2014-2019	10^{-3}	1[0.5-5]	2
ZTF '	42.0	ld	2.00×10 ⁻²	22500	2017	1.1×10 ⁻³	0.8[0.4-4.8]	20
RASS	3.1		4.00×10 ⁻⁵	12000	6 months	8.0×10 ⁻⁴	1[0.3-4.4]	10
eROSITA	0.8	6 months	2.00×10^{-6}	4320*	4 years	3.0×10^{-3}	2[0.5-6.5]	26

Ghirlanda+15

ORPHAN AFTERGLOWS & SURVEYS

Gaia can see them!

THE IMPORTANCE OF ORPHAN AFTERGLOWS

- to confirm the GRB jet model
- to put constraints on the jet opening angle and structure
- Not (or less) affected by hard-X rays: unique access to the pristine gas surrounding massive stars at any z!
- GW

HOW CAN WE RECOGNIZETHEM?

- First hints with light-curve
- Optical spectroscopy: z, continuum, HI & metal absorption line, fine structures lines
- we had a VLT ToO program with X-Shooter, now DDT?
- we need to improve the Gaia Alert Pipeline and flags!

SUGGESTIONS FOR GAIA ALERTS

- As fast response as possible (automatised after downloading?)
- include the following info in the Alert (script readable): blue/red, hostless?, last non-detection
- access to light curves

CONCLUSIONS

- GRB orphan afterglow detection will bring unique info on GRB models
- GRB orphan afterglow detection will give unique access at any z
 to the pristine gas surrounding massive stars
- we can obtain VLT ToO observations: we need to improve the Gaia Alert Pipeline and flags!

THANKS!