Danish telescope – Czech participation
V. Votruba, F. Hroch, P. Koubsky
Astronomical Institute, Czech Academy of Science
• Danish national telescope
• Operated since 1979
• Located on ESO La Silla observatory
• Complete robotization since 2012
• Remote control and observing

• Off-axis mount
• Diameter of mirror - 1.54 m
• Pointing restriction due to the limited space inside dome

Current state

• CCD controller (Danish Copenhagen)
• CCD chip E2V – CCD44-82
• 2048 by 4096 pixels, used 2kx2x
• Pixel size 13.5 μm
• Resolution 0.395“/pixel
• Field of View 13.48 x 13.48 arcmin
CCD Chip improvement

Close future:

CCD231-42-0-F61 (Danish)

- 2048x2046 pixels
- Pixel size 13.5 μm
- Lower noise

<table>
<thead>
<tr>
<th>λ [nm]</th>
<th>QE [%]</th>
<th>QE [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>46.8</td>
<td>55.2</td>
</tr>
<tr>
<td>400</td>
<td>89.6</td>
<td>99.0</td>
</tr>
<tr>
<td>450</td>
<td>91.0</td>
<td>99.0</td>
</tr>
<tr>
<td>500</td>
<td>88.1</td>
<td>96.9</td>
</tr>
<tr>
<td>550</td>
<td>87.9</td>
<td>99.0</td>
</tr>
<tr>
<td>600</td>
<td>90.0</td>
<td>99.0</td>
</tr>
<tr>
<td>650</td>
<td>91.8</td>
<td>99.0</td>
</tr>
<tr>
<td>700</td>
<td>92.8</td>
<td>99.0</td>
</tr>
<tr>
<td>750</td>
<td>92.6</td>
<td>99.0</td>
</tr>
<tr>
<td>800</td>
<td>88.7</td>
<td>99.0</td>
</tr>
<tr>
<td>850</td>
<td>77.8</td>
<td>99.0</td>
</tr>
<tr>
<td>900</td>
<td>57.2</td>
<td>63.2</td>
</tr>
<tr>
<td>Filtr</td>
<td>CWL [nm]</td>
<td>FWHM [nm]</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>U</td>
<td>355.596</td>
<td>53.3725</td>
</tr>
<tr>
<td>B</td>
<td>421.168</td>
<td>99.1674</td>
</tr>
<tr>
<td>V</td>
<td>544.269</td>
<td>115.543</td>
</tr>
<tr>
<td>R</td>
<td>641.367</td>
<td>158.477</td>
</tr>
<tr>
<td>I</td>
<td>795.076</td>
<td>148.752</td>
</tr>
<tr>
<td>u</td>
<td>348.343</td>
<td>348.343</td>
</tr>
<tr>
<td>v</td>
<td>410.816</td>
<td>19.007</td>
</tr>
<tr>
<td>b</td>
<td>468.3</td>
<td>16.0105</td>
</tr>
<tr>
<td>y</td>
<td>548.26</td>
<td>18.2505</td>
</tr>
<tr>
<td>Hb</td>
<td>486.256</td>
<td>7.54895</td>
</tr>
<tr>
<td>Hb</td>
<td>477.382</td>
<td>7.34235</td>
</tr>
<tr>
<td>Ha</td>
<td>665.444</td>
<td>6.16058</td>
</tr>
</tbody>
</table>
Time schedule

Good news:

- Totally 50% of Danish observing time for Czech side
- 25% OT for interplanetary matter group
- 25% OT for three different stellar groups

- Totally for Czech astronomers – 180 observing days
- For interplanetary group 90 observing days
- For stellar groups also 90 observing days together

- Data storage located in Ondrejov contains all photometric observations made by Czech and Danish astronomers

Bad news:

- 30 observing days for one group
- Random distribution from October to April
Data processing

- Automatical data reduction based on MuniPack
- One whole observing night ~ 2 hours of CPU
- VO compatible output
- VO database under construction

Scientific projects:

- mostly short and middle time variability
 LMC, SMC and GSEP region

- Eclipsing binaries
 Double Periodic Variables
- LMC and SMC Be stars monitoring
 Gaia alerts follow-up

- Target of opportunity cooperation between stellar groups
Munipack
A general astronomical image processing software

- photometry corrections (bias, flat-field)
- astrometry (including matching)
- full photometry calibration (photon-based, colour system transformations, atmospheric corrections)
- robust statistical estimators
- Virtual observatory access
- basic FITS utilities
- command-line and GUI interface
- Open source (Fortran and C++), GPL
Calibration By Photons

- CCD is photon counting detector
- Flux in filter by Gauss-Hermite quadrature

Flux F and photon flux Φ relations

$$ F = \int_0^\infty f_\lambda(\lambda) \ t(\lambda) \ d\lambda = \int_0^\infty \Phi_\lambda(\lambda) \ \frac{hc}{\lambda} \ t(\lambda) \ d\lambda. $$

Approximation of deconvolution

$$ N_V = AT \ \Phi_V \approx \sqrt{2\pi} \ AT \ f_V \delta_V \ \frac{l_V}{hc} \ \frac{l_V}{hc} \ \approx \ ATF_V \ \frac{l_V}{hc} \ . \ 10^{-0.4 \ m_V}. $$
Robust Statistics

The effective attenuation

\[C = t N \]

Normalisation

\[N(0, 1) \sim \frac{C - t N}{\sqrt{C + \sigma^2 + \ldots}}, \ N \gg 1 \]

Parameter is solved by the equation

\[L = \prod_{i=1}^{N} \frac{1}{s \sqrt{\sigma_{n_i}^2 + t^2 \sigma_{c_i}^2}} f \left(\frac{c_i - t n_i}{s \sqrt{\sigma_{n_i}^2 + t^2 \sigma_{c_i}^2}} \right). \]

where \(f(x) = \exp(-\varphi(x)) \) is a robust function:

\[\varphi(x) = \begin{cases}
-ax - a^2/2, & x < -a \\
x^2/2, & -a < x < a \\
ax - a^2/2, & x > a
\end{cases} \]
Spread Bessel Profile

Bessel Convolution profile

\[I(r) = \frac{1}{\sqrt{2\pi s}} \int_{-\infty}^{\infty} e^{- (r-x)^2 / 2s^2} \cdot \left[\frac{2J_1(x)}{x} \right]^2 \, dx. \]

Approximation

\[I(r) = -\frac{8}{\sqrt{\pi}} \sum_{j=1}^{n} H_j \frac{4J_1(r - \sqrt{2s}a_j)^2}{(r - \sqrt{2s}a_j)^2}. \]
Astro-mill
Reduction pipe-line on base of Munipack

- Fully automatics reduction
- Mean bias and flat-fields
- Astrometry on base UCAC4
- Photometry with OSPS
 Photometry Catalogue
- (July 2015): 702 nights,
 146261 RAW frames
OSPS Photometry Catalogue
Ondřejov Southerland Photometry Survey

- about 3600 stars (Landolt fields, SMC, LMC)
- magnitude range 12 - 17 in Johnson UBVRI filters
- alone stars above 10 FWHM
- more than 3 different nights
- verification required
Double periodic variable observation

- LMC DPV (Poleski+, 2010)
- OGLE-LMC-DPV – 056

Mean magnitude(I): 15.37
Period(1): 176.146d
Observed during 2014/2015
OGLE15mg

Ra = 2:09:02.37
Dec = -73:24:41.8

m_V ~ 20.94 mag
Thank for your attention

Reference:

MuniPack
http://munipack.physics.muni.cz/

OGLE IV transients
http://ogle.astrouw.edu.pl/ogle4/transients/transients-lite.html