## SRG/eROSITA- Gaia

 synergies for transients and variablesArne Rau (MPE, co-chair eROSITA_DE Time Domain Astrophysics Working Group)
eROSITA scientific motivation
eROSITA instrument
time domain astrophysics with eROSITA
eROSITA synergies with Gaia

## Why building eROSITA?

## ROSAT (1990-98) provided the $1^{\text {st }} \mathrm{X}$-ray all-sky survey with an imaging telescope.


(Courtesy M. Freyberg)

Current constraints on $\Omega_{\mathrm{DE}}$ and $\Omega_{\mathrm{M}}$ from $\sim 100$ X-ray Clusters originally detected by ROSAT.


Structure growth depends on expansion rate, i.e. $\mathrm{H}(\mathrm{z})$, which depends on dark/baryonic matter density and dark energy density, and equation of state.


## eROSITA will be 30x deeper than ROSAT \& its $\sim 100.000$

 galaxy clusters will provide cosmological constraints competitive will Planck \& SZ.Coma

Centaurus

$$
\begin{array}{cccccc}
-23.0 & -21.0 & -19.0 & -17.0 & -15.0 & -13.0 \\
& & -11.0 \\
& \log (\mathrm{Lx}) & {\left[\mathrm{erg} / \mathrm{cm}^{2} / \mathrm{s} / \mathrm{arcmin}^{2}\right]}
\end{array}
$$

In addition to galaxy clusters, eROSITA will also detect $\sim 3$ Million AGN and $\sim 500.000$ stars all-sky.


Image credits: MPE, eRosita_DE consortium, XMM-XXL

## The eROSITA instrument onboard

Spectrum-Roentgen-Gamma

SRG - Russian satellite with two scientific instruments, eROSITA lead by MPE, and ART-XC lead by IKI, to be launched from Baykonour into L2 ~Dec 2017.

eROSITA consists of 7 identical telescopes, feeding 7 cameras. All observe a common $\sim 1$ deg diameter field of view.


$7 \times 54$ nested gold-coated nickel mirror shells 1.6 m focal length on-axis HEW ~16" 1


7 Framestore pnCCDs
Resolution of $\sim 20$ at 1.5 keV , i.e. 77 eV effective area comparable to XMM x7

## Survey strategy similar (but not identical) to Gaia.

## eROSITA sky is split between Germany (West in Gal. Coord.) and Russia (East)

 (Wast)
$2.77 \mathrm{e}+02$
DE: eROSITA data reduced at MPE and to be made public in instalments (1/2yr, ?2yr, 4yr) RU: tbd

# eROSITA time domain astrophysics 

Each position on the sky will have 8-500 visits (eRASS days) within 4yr.


Gaia Scan coverage on 04 Dec 2016

similar survey poles as eROSITA, i.e. highest coverage for same sky areas.


Tidal Disruption Flares


- ~125 TDEs (all-sky) by comparing eRASS1 with RASS
- ~650 TDEs (all-sky) by comparing eRASS2 to eRASS1, eRASS3 to eRASS2, etc
- typically visible for 2-4 eRASS
- ~20 rising TDEs (all-sky) within 1 eROSITA day

| $\log L_{\mathrm{X}}$ | stars |
| :--- | :--- |
| 26.0 | late M dwarf |
| 26.5 | active VLM (M9) star |
| 27.0 | Sun, Altair (A7), Prox Cen (M5) |
| 28.0 | Procyon (F5), Eps Eri (K2) |
| 29.0 | low-mass CTTS, active M dwarf |
| 30.0 | EK Dra (active G2) |
| 31.0 | Algol, bright TTS, early B star |
| 32.0 | WR1, O type star |
| 33.0 | $\theta^{1}$ Ori C (mag. O5) |

Stellar Population Studies
-Activity vs. age, rotation, M , T
-Lx/Lbol rel. along hot star sequence Dynamo theory
-Study of(super-)saturation effects and Lx/Lbol evolution -Transition effects at fully connective boundary Local SFH \& Gal. Structure -Young nearby stellar population -early evolution of planetary systems Properties of individual SFR -masses, IMF, SFH -models od SF\& scenarios

0.5 Million stars!
-HD 22213
HD 33959C


Transients and variables will be searched for in all time scales, from $<30$ s to years. (Only in the German part of the sky!)


## Some thoughts about synergies

## Gaia data (obviously) important for eROSITA astrometry

 whether Gaia and eROSITA detect the same transients will depend on the relative orbits and event timescales.Survey poles offer common areas with large number of visits for joined variability studies

X-rays can help distinguishing unresolved nuclear SN from Gaia from TDEs

Gaia stellar classification (position, distance, space-motion, multiplicity, etc.) important for all eROSITA population studies of stars

Activity (X-rays) - rotation - age (optical) relation for stars
Gaia sources can be observed with dedicated pointed observations

