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Outline 
 
 
 
  

q  Why Tidal Disruption Events are important, and why do very long baseline 
interferometry (VLBI)? 

q  European VLBI Network (EVN) results: 

§  “No apparent superluminal motion in the first-known jetted tidal 
disruption event Swift J1644+5734”, Yang et al. 2016, MNRAS 462, L66 

§  “The TDE ASASSN-14li and Its Host Resolved at Parsec Scales with the 
EVN”, Romero-Cañizales et al. 2016, ApJ 832, 10 

§  “The case of IGRJ12580+0134” – new results by Blanchard et al.   

 
q  Further thoughts / Conclusions 
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Why TDE are important? 
 
 
 
 §  They may give a clue on the massive BH population (MBH<106 M¤) 

    
      To understand supermassive BH formation  
      we must now the BH demographics – but 
      massive BH below ~106 M¤ are hard to find. 
 
      Where are the left-over seed BH required by 
      structure formation models? How do they grow? 
 
 
§  We can study jet formation in a pristine environment  
       
      Also relevant for AGN feedback. VLBI will have 
      a crucial role in this, since milliarcsecond resolution 
      is needed. 

MBH - σ relation 
 
 
 
 
 
 
 
 
 
 

Barth, Greene & Ho (2005) 
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What is the expected TDE rate? 
 
 

Intrinsic rate 
NTDE~ a few x10-5 per 
yr per galaxy 

M = [106  - 108 Msun ] 
 
 

From intrinsic to jetted TDE rate:  
rescaling R(z) by a factor  (2Γ)−2 

 
Must understand jet efficiency  
and measure Lorentz factors  
in TDE 

BH mass function (G 
and Gz models adopted) 
  
Shankar et al. (2013) 

Take Swift J1644+5734 as prototype for predictions  
in the X-ray and radio bands: Donnarumma et al. (2015) 
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Swift J1644+5734: the first jetted TDE  
 
 
 
 

Zauderer et al (2011, 2013)                       Berger et al. (2012), Wiersema et al. (2012)     

 
§  Within 0.2 kpc of the host galaxy nucleus 
 
§  X-ray lightcurve follows t −5/3   
 
§  Total X-ray energy  ~1053 fbeam erg 
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§  X-rays: rapid variability (100s), non-thermal 

spectrum, high Eddington luminosity =>  
     inner jet close to the BH 
 
§  Radio: non-thermal, no rapid variability  => 
     shock interaction with ISM? 
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Swift J1644+5734: the first jetted TDE  
 
 
 
 

Berger et al. 2012 §  Estimate from interstellar scintillation: Γjet ~ 
5 (multi-frequency radio monitoring; Zauderer 
et al. 2011). 

 
§  Γjet ~ 7 – 2, i.e. decreasing with the time in a 

collimated jet by analogy to GRB afterglows. 
The jet will be resolved (~0.2 mas) with VLBI 
at 22 GHz  in 6 years assuming a jet opening 
angle ~5 deg (Berger et al. 2012). 

 
Possible VLBI strategies for Swift J1644+5734  

 
Choice 1: wait for 6 years, measure size (if source still bright) with VLBI at high frequency 
 
Choice 2: probe superluminal jet via proper motion βapp with VLBI (not necessarily highest frequency) 
 

 Constraints on Lorentz factor Γjet = (1 −β2
int )−1/2  and viewing angleΘ will be:  

 
Γmin = (β2

app + 1)1/2 

cos θmax = ( β2
app − 1) / (β2

app + 1) 
 



European VLBI Network (EVN) observations  
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§  Initial real-time e-VLBI observations to  
establish strategy 
  
§  Deep follow-up observations at 5 epochs 
within three years 
 
§  Choose 5 GHz for excellent astrometry,  
great sensitivity and longer source  
detectability (as opposed to high frequencies) 
 
 
 
 

§  Central Processor: JIVE, Dwingeloo, NL 

§  The main reference source 
source was ICRF J1638+5720, 
55 arcmin away 
 
Bright blazars often vary and  
have unstable cores – must be 
careful! 



Observational strategy 
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Blabla  

Blabla  

ICRF J1638+5720 

Swift J1644+5734 

2.8 arcmin 

Calibration of faint sources in VLBI: phase-referencing 

 

Swift J1644+5734: in-beam phase-referencing (for 
small dishes), to minimize phase-referencing errors 

FIRST J1644+5736: 
Confirmed by short e-VLBI observations 

Small dish beam 

Narrow-beam telescopes (Wb, Ef, Jb1) 
Nodding observations 



The target field with VLBI resolution 
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Ultra-high precision astrometry 
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ICRF frame: standard deviation is 50 μas in RA and 260 μas in DEC; similar to Berger et al. (2012) 
 
TDE-FIRST source relative astrometry: 13 μas in RA and 11 μas in DEC – best ever achieved with the 
EVN for a continuum source 
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Strong constraint on proper motion 
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 Γ= 1.1, βint = 0.42
 Γ= 1.4, βint = 0.70
 Γ= 2.0, βint = 0.87
 Γ= 4.0, βint = 0.97

=> Small viewing angle 
 
If Γjet = 2 (Zauderer et al. 2013) , 
then Θv< 3° 
 
(“Tip of the iceberg”, or “cosmic 
conspiracy”?) 
 
 
=> Or strong deceleration  
 
Γjet ≤ 2, due to dense circum-nuclear 
medium / no constraint on viewing angle.  
 
ncnm ≥ 5 Eiso,54 cm-1  at radius ~1pc 



Supporting alternative views? -unlikely 
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Kara et al. (2016) Sadowski & Natarayan (2015) 

Highly super-Eddington, fully radiative 
pressure driven jets can explain the  
high luminosity jets in (most) TDE and 
ULXs 
 
βint ~ 0.3c  

X-rays may be a result of reverberation off 
a super-Eddington accretion flow, not dominated 
by a jet. 
 
No relativistic jet is needed to explain X-rays 
(but what about the transient radio emission?) 
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The case of ASASSN-14LI 

Relativistic jet from an off-axis thermal TDE?  
-  But note pre-existing AGN 
-  Image reliability issues: faint structure to be confirmed 
-  At odds with van Velzen+16 claim of jet deceleration within 0.1 pc? 

Romero-Canizales et al. 2016 
arXiv 1609.00010v1 
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The case of IGR J12580+0134 

INTEGRAL hard X-ray transient detected in the core of 
the Seyfert 2 galaxy NGC 4845 in 2011 (IGR J12580+0134) 
 
XMM-Newton, Swift, and MAXI follow-up: evolution as expected for a TDE 
 
Variability: MBH~3x105 M¤;  10% of a 14-30 Jupiter-mass object needed for the flare 

Nikołajuk & Walter 2013 
A&A 552, A75 
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Expanding jet in IGR J126580+0134 

1.4 GHz VLA surveys: 46 mJy (NVSS), 33.9 mJy (FIRST) 
 
Within ~ a year after TDE: 230-260 mJy (1.6 GHz), 432-362 mJy (6 GHz) 
 
SSA spectrum; spectral evolution consistent with adiabatic expansion, i.e. outflow that 
should be resolvable with VLBI 

Irwin et al. 2015 
ApJ 809(2), id. 172 

L-band (1.6 GHz) JVLA data. B array: blue , C array: black, D array: grey 
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The first relativistic off-axis TDE  

Lei et al. (2016) external forward shock model: expected 5 GHz flux is ~90 mJy now 
 
Irwin et al. (2015) standard jet model: expected size is ~12 milliarcseconds now 
 
=> The e-EVN should resolve IGR J12580+0134 at 5 GHz in 2016 

Lei et al. 2016 
ApJ 816(1), id. 20 
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The first relativistic off-axis TDE with the e-EVN 

=> No resolved jet; radio source is consistent with a faint Seyfert 2 core 

Blanchard et al.  
in prep. 



Concluding remarks 
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§  Knowledge of jet efficiency and typical Lorentz factor is important  
    to be able to predict TDE rates 
 
§  Donnarumma et al. (2015) predicts TDE will be a unique probe 
    of quiescent SMBH at high redshifts, especially in the low-mass tail  
    of the SMBH mass function (LTDE ∝ MBH

−1/2)! 
 
§  Future surveys in the optical (LSST), X-rays, radio (SKA) have  
    great potential to detect a large number of events 
 
§  VLBI and especially when SKA1-MID added as a phased array will be 
    a great tool to study jetted TDE  
    (SKA-VLBI, Paragi et al. 2015) 

§  Currently no strong observational support for relativistic jets from VLBI yet; 
will keep trying… Gaia TDE candidates radio follow-up? 


