# CLASSIFICATION OF YOUNG STELLAR OBJECTS AMONG GAIA ALERT CANDIDATES

**József Varga** Konkoly Observatory, Budapest

P. Ábrahám, R. Beck + Konkoly Gaia Group



8th OPTICON Gaia Science Alerts Workshop, 7 Dec 2017, Warsaw



## Motivation

- Many Gaia alerts are unclassified (Class = unknown)
  - possibly many young stellar objects (YSOs)

### - Can we identify YSOs from GAIA light-curves alone?

- and also determine subclass (e.g., EXor, UXor)
- need automatic classification

#### - GAIA sampling: roughly monthly cadence



## Motivation

- Richards et al. (2012)

- classification of variable stars
  - 28 classes
  - probabilistic
  - machine learning
- application to the All-Sky Automated Survey (ASAS)
   – < 20% error</li>
- our experiment: apply a similar approach
  - to GAIA light-curves



#### Data

- use sources classified by ASAS as a training set

– plan:

- use real GAIA light-curves for YSOs in ASAS catalog
- as a first step:
  - resample ASAS data to GAIA epochs



## **YSO light-curve sampling**

- aperiodic variations are common
- what fraction of the variability can be detected by the GAIA sampling?
- test with UX Orionis type stars

• periodic fadings (few weeks)



## **YSO light-curve sampling**

- synthetic light-curves sampled at GAIA epochs

- randomly shift the starting epoch
- repeat sampling many times



### Automatic classification I

#### - Principal component analysis (PCA)

- no separation between classes
- no success



## **Automatic classification 2**

#### 8

### – Deep learning algorithm

- neural network
- apply directly to the light-curves
- Result: no success
- Main difficulty:
  finding a suitable,
  homogeneous
  representation for
  the GAIA light-curves



## Future plans

- use real GAIA light-curves

- find a suitable representation
- might not work
- or try an analytic representation
  - like in Richards et al. (2012)
- further possibility:
  - use GAIA spectra
    - promising possibility

#### Thank you for your attention