CLASSIFICATION OF YOUNG STELLAR OBJECTS AMONG GAIA ALERT CANDIDATES

József Varga
Konkoly Observatory, Budapest

P. Ábrahám, R. Beck + Konkoly Gaia Group

8th OPTICON
Gaia Science Alerts Workshop,
7 Dec 2017, Warsaw
Many Gaia alerts are unclassified (Class = unknown)
 • possibly many young stellar objects (YSOs)

Can we identify YSOs from
GAIA light-curves alone?
 • and also determine subclass (e.g., EXor, UXor)
 • need automatic classification

GAIA sampling: roughly monthly cadence
Motivation

- Richards et al. (2012)
 - classification of variable stars
 - 28 classes
 - probabilistic
 - machine learning
 - application to the All-Sky Automated Survey (ASAS)
 - < 20% error
- our experiment: apply a similar approach
 - to GAIA light-curves
Data

– use sources classified by ASAS as a training set

– plan:
 • use real GAIA light-curves for YSOs in ASAS catalog

– as a first step:
 • resample ASAS data to GAIA epochs
 – simulated GAIA light-curves
- aperiodic variations are common
- what fraction of the variability can be detected by the GAIA sampling?
- test with UX Orionis type stars
 - periodic fadings (few weeks)
YSO light-curve sampling

- synthetic light-curves sampled at GAIA epochs
 - randomly shift the starting epoch
 - repeat sampling many times
 - measure
 - variability amplitude
 - period

- results
 - variability can be recovered
 > 1 mag amplitude
 - large scatter in the period
Automatic classification I

- Principal component analysis (PCA)
 - no separation between classes
 - no success
Deep learning algorithm

- neural network
- apply directly to the light-curves

- Result: no success

- Main difficulty:
 finding a suitable, homogeneous representation for the GAIA light-curves
Future plans

– use real GAIA light-curves
 • find a suitable representation
 • might not work
– or try an analytic representation
 • like in Richards et al. (2012)
– further possibility:
 • use GAIA spectra
 – promising possibility

Thank you for your attention