Transients near the centers of the galaxies

Rupak Roy

Inter-University Center for Astronomy and Astrophysics Pune, India

ASASSN-15lh (artist impression)

8th Gaia Science Alerts Workshop 6 - 8 December, 2017 Univ. of Warsaw

Star formation (& SN) near the center of galaxies

Kawakatu and Wada, ApJ, 2008

Example : SNR at Milky-way center

Lau, R. M. et al. 2015

Other possibilities : TDE ?

Kawakatu and Wada, ApJ, 2008

Hills 1975; Rees 1988; Mageshwaran & Mangalam 2015; Guillochon et al. 2013, 2014

Confusion in determining the nature of nuclear transients

ASAS-SN 15lh :

SLSN - Dong et al. Science, 2016 TDE - Leloudas et al. Nature, 2016

van Velzen et al. (2011)

- SDSS multi-epoch imaging data (Stripe 82)
- 2 TDEs were found searching 2.5 M galaxies randomly.
- 37 On-center objects where host is an AGN. At least 10% of these AGN will be Seyfert galaxies and hence a potential site to get nuclear-SNe.
- Thus probability of getting SNe and TDEs in galaxy center is comparable to each other !

An iPTF nuclear transient at z = 0.098

Is it - AGN ? TDE ? SN ?

Optical properties :

Is it an AGN ?

- Probably not !

TDE host

Phase(iv): Quiescent phase "LLAGN?"

Nature of the host

Transient Spectra (with AGN emission lines)

with SN & TDE

Radius and Temperature profiles are more similar to SLSNe rather than canonical TDEs

Compare - colour

It is redder than other TDE

Days Since Discovery + Offset

ASASSN 14ae : a TDE (Holoien et al. 2014)

As a TDE [TDEFit]

• 16 Free parameters !

M_smbh > 10^6 M_sun ; Spin > 0.9 ; M_star ~ 0.08 M_sun

TDEFit (Guillochon et al. 2013, 2014)

There are nuclear objects which show properties similar to TDE and CCSNe. We should find better technique to segregate them.

A new class of nuclear transients at the centers of active galaxies

Kankare et al., Nature, 2017

iPTF 14hls : an example of slowly evolving SN !

Archavi et al., Nature, 2017

At present where India can contribute

Giant Meterwave Radio Telescope

Channel	Slot	Filter	Name	Mean λ (A)	Δ λ (A)	ASTROSAT Instrument Con	
FUV	0	Block	Block			Large Area V ray Propertie	
	1	F148W	CaF2-1	1481	500		
	2	F154W	BaF2	1541	380		
	3	F169M	Sapphire	1608	290		
	4		Grating-1				
	5	F172M	Silica	1717	125		
	6		Grating-2				
	7	F148Wa	CaF2-2	1485	500		
NUV	0	Block	Block			Soft X-ray Telescope (SXT)	
	1	N242W	Silica-1	2418	785		
	2	N219M	NUVB15	2196	270		
	3	N245M	NUVB13	2447	280	Scanning X-ray Sky monitor (SSM)	
	4		Grating				
	5	N263M	NUVB4	2632	275		
	6	N279N	NUVN2	2792	90	Cadmium Zinc Telluride Imag	
	7	N242Wa	Silica-2				
VIS	0	Block	Block				
	1	V461W	VIS3	4614	1300	http://astrosat.jucaa.in/	
	2	V391M	VIS2	3909	400	mup.//astrosat.iucaa.iii/	
	3	V347M	VIS1	3466	400		
	4	V435ND	ND1	4354	2200		
	5	V420W	BK7	4200	The	main characteristics of the CZT imager will be as follows:	
						Detector:Cadmium-Zinc-Telluride detector aEnergy Range: $10 - 150 \text{ keV}$ Pixel size: $2.4 \text{ mm x } 2.4 \text{ mm}$ Number of pixels: 16384 Geometric area: 1024 cm^2 Field of View: $6^0 \text{ x } 6^0 (10-100 \text{ keV})$ (defined by collimator) $17^0 \text{ x } 17^0 (>100 \text{ keV})$ (defined by Coded Mask Housing)Angular resolution:8 arc min (<100 keV) : 2cm thick CsI crystal+PMT S0cm x 70cm (height) (without radiator plate)	

Instrument Configuration

The main characteristics of the SXT will be as

reree op or rerigin		2100
		(including baffle, door and
		camera)
Focal Length	:	2000 mm
Telescope PSF	:	1.5 - 2.5 arcmin (rms)
Field of View	:	41.3 x 41.3 arcmin
Energy range	1	0.3-8.0 keV
Detector	0	E2V CCD-22
		(Frame Store)
Detector Format	:	600x600 pixels
Pixel Scale	:	4.13 arc sec/pixel
CCD Readout	:	Photon Counting,
modes		Imaging, Timing
Effective Area	:	200 cm ² @ 1.5 keV
		(See figure below)
Position	:	30 arc sec
accuracy		
Sensitivity		10 micro Crab

or better

expected

3.6m Devasthal Optical Telescope (DOT)

Detectors : Now Optical-NIR Imagers are operating FOSC will be available from 2019

Almost 40% of the nights seeing is below 1".0

Spectroscopic Night ~ 150 Photometric Night ~ 120

Take-home messages :

- There are nuclear transients (e.g., ASASSN-15lh, PS1-10adi) which show natures similar to both SNe and TDEs. High astrometric precision of Gaia will be extremely useful.
- Theoretical predictions about the probable spectral signatures of TDEs and SNe are necessary to distinguish TDEs from SNe.
- Rapid follow-ups of the early evolutions of TDE and SNe in X-ray/UV and late radio observations are important to distinguish these objects on the basis of their observational signatures. Early discovery by Gaia and rapid follow-up by other telescopes like ASTROSAT will be extremely helpful.

