Rapid Robotic Followup of Transients

Iair ("ya-eer") Arcavi Tel Aviv University

Surveys of the Transient Sky are Flourishing

All-Sky Automated Search for Supernovae (ASAS-SN) Catalina Sky Survey (CSS) Catalina Real-Time Transient Survey (CRTS) Dark Energy Survey (DES) Evryscope

Gaia

Zwicky Transient Facility (ZTF) Kepler-2 (K2) Kilodegree Extremely Little Telescopes (KELT) La Silla Quest Optical Gravitation Lensing Experiment (OGLE) Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) SkyMapper Southern Sky Survey

(partial list, more being planned and built)

The Phase Space of Transients is Being Filled

Las Cumbres: A Network of Robotic Telescopes

LAS CUMBRES OBSERVATORY GLOBAL TELESCOPE NETWORK

Las Cumbres: A Network of Robotic Telescopes

All telescopes are scheduled automatically every 15 minutes

What is Robotic Followup Good For? I: Supernova First Light

We Don't Understand Massive Stars & Their SNe

Rarely, We Can See the Star Before it Exploded

Cao, Kasliwal, Arcavi et al. 2013

Rarely, We Can See the Star Before it Exploded

So far <20 direct progenitor detections, most for the same supernova type

Early-time supernova observations can measure the **radius**, **composition** and **mass loss history** for **hundreds** of pre-explosion massive stars

Cooling Reveals the Progenitor Structure

Light Curve Infer Inner Structure of **Progenitor Star Right Before Explosion**

Measure Early

Observing the first SN photons is challenging

Need to find **supernovae** within hours of the explosion

Need to identify them in real-time

Need to **trigger** multi-wavelength followup observations immediately

Need to obtain observations **continuously** for the first hours-days after discovery

Object List Scheduling Dataflow Floyds Inbox Pending Users TWiki

PS15sv SN la 91T-like z = 0.038

16:13:11.74 +01:35:31.1 243.298917 +1.591972

Home | Object List | Scheduling | Dataflow | Floyds Inbox | View object:

PS15sv SN 1a 91T-like z = 0.038

16:13:11.74 +01:35:31.1

1m Usage:

2m Usage:

10

Logged in as iair

[reset]

15

Comments

Submit

Unprecedented Coverage of Cooling Emission

Piro, Muhleisen, Arcavi et al. 2017

What is Robotic Followup Good For? II: Rapidly Evolving Events

Rise Time ~> Mass Ejected in Explosion

Fast & Luminous Can't be Ni-Powered

 $t_{\rm peak}$

Adapted from Arcavi et al. (2016)

Fast & Luminous are Heterogen

100

Jan 24

Jan 25

Vinko et al. (2015)

Luminous Rapidly Evolving Events

 $t_{\text{peak}} \approx \sqrt{\frac{\kappa M}{vc}}$

Fastest 'Bright' Transient: The GW170817 Kilonova

Arcavi et al. 2017

Compilation from: Arcavi 2018 Data from: Andreoni et al. 2017, Arcavi et al. 2017, Cowperthwaite et al. 2017, Coulter et al. 2017, Diaz et al. 2017, Drout et al. 2017, Evans et al. 2017, Hu et al. 2017, Kasliwal et al. 2017, Lipunov et al. 2017, Pian et al. 2017, Pozanenko et al. 2017, Shapee et al. 2017, Smartt et al. 2017, Tanvir et al. 2017, Troja et al. 2017, Utsumi et al. 2017, Valenti et al. 2017.

Retrieved via: kilonovae.space Polar Ejecta: Blue emission

Tidal Tails: Red emission Mass Ratio

Different ejecta components constrain different physics.

Disk Winds

Sub-Day Cadence Critical for Constraining Models

Sub-Day Cadence Critical for Constraining Models

http://treasuremap.space

Profile

Logout

Treasure Map Home Alerts Query Pages - Submit Pages - Documentation

Gravitational Wave Ligo Alerts

S190425z

Gravitational Wave Localization and Pointings: S190425z

the true to the tr

What is Robotic Followup Good For? III: Long-Term Monitoring

iPTF14hls: "The Star That Wouldn't Die"

Last

non-det

is 140d

before

Arcavi et al. 2017b, Nature

SN 1999em (typical IIP)

iPTF14hls

+ Constant Scaled \mathbf{f}_{λ}

Summary - Global Robotic Followup → Science

Early Emission from Supernovae: Constrains the progenitor star (radius, internal structure, mass loss history...).

Rapidly Evolving Events & Rare Long-Lived Supernovae: Teach us about non-standard supernova power mechanisms.

Kilonovae: Reveal nuclear physics, extreme gravity, accretion, cosmology...

All of these science cases (and many more!) rely on robotic dynamical observing for (1) rapid response, (2) continuous and (3) long-term regular monitoring.