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ABSTRACT

Using Monte Carlo simulations we produce several microlensing amplification maps for each of
the four images of the quasar QSO 2237+0305. With FFT algorithms we convolve the maps with
the filters representing sources of different sizes and surface brightness distributions. The cuts of the
convolved maps represent fragments of synthetic light curves for corresponding sources. Since FFT
method is not time consuming we can examine large number of cases and obtain several statistical
characteristics of image variability. A simple test involving the measured amplitude of the apparent
QSO variability during≈ 5 years of OGLE III observations gives an estimate of the relative source
velocity, 4000±2000 km/s.
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1. Introduction

The quasar Q2237+0305 (the Einstein Cross) (Huchraet al. 1985) is the best
known example of microlensing induced variability. The variability was discov-
ered by Irwinet al. (1989), who were followed by many observers monitoring the
four QSO images. The Optical Gravitational Lensing Experiment observations of
the source provide the most extensive database covering theseasons 1997–2000
(Woźniaket al. 2000a,b) and 2001 to the present, with measurements every few
days.

The variability observed in Q2237+0305 can be used to verifymodels of the
source as well as small scale mass distribution in the intervening galaxy. Some lim-
its on the source size and structure and its dependence on thewavelengths consid-
ered have been obtained with the help of small amount of observations (Rauch and
Blandford 1991, hereafter RB91, Jaroszyński, Wambsganss and Paczyński 1992,
hereafter JWP92, Czerny, Jaroszyński and Czerny 1994, Jaroszyński and Marck
1994). The investigation of the influence of the source structure on light curves
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is still in progress (e.g., Wyithe et al. 2000, Yonehara 2001, Wisotzkiet al. 2003,
Moustakas and Metcalf 2003, Chartaset al. 2004, to cite a few). In this approach
we take the simplified view of Mortonson, Schechter, and Wambsganss (2005), who
infer that the source size as measured by the half light radius is the most important
parameter of its structure, while the detailed distribution of radiation intensity has
only secondary meaning, at least for statistical investigation of light curve proper-
ties. While a better knowledge of source models is certainlyimportant in investiga-
tion of high magnification events like caustic crossings with detailed observations,
the source size alone is sufficient when investigating the relations between variabil-
ity amplitudes (and similar characteristics) of the different Q2237+0305 images,
which is the aim of this paper.

A direct modeling of the microlensing variability of the Q2237+0305 images is
a very difficult and time consuming task. Such approach has been applied with suc-
cess by Kochanek (2004) to the OGLE II data (Woźniaket al.2000a,b). Kochanek
constructs huge number of Monte Carlo simulated magnification maps with differ-
ent mass distributions of the microlenses and different ratios between the discrete
and smooth mass surface density. Also the relative velocity, source size and shape
can vary. The likelihood that simulations reproduce the observed light curves de-
pends on parameter choice, so the latter can be fitted. Another approach to direct
modeling (Leeet al.2005) is less general, since it only attempts to define few mi-
crolens masses and positions, responsible for particular high magnification events.

In this paper we examine various statistical characteristics of simulated mi-
crolensing light curves. The simulations use the parameters of Schneideret al.
(1988) describing the four images of Q2237+0305 within the macrolens model.
While this model fixes the total surface mass density of the lensing galaxy at the
positions of images, the amounts of matter in smooth and discrete distributions are
not independently restricted and we use different mixturesof the two. The con-
struction of magnification maps by a ray shooting method (e.g., Kayser, Refsdal
and Stabel 1986, Paczyński 1986, Wambsganss 1990) is the main computational
burden of our approach. The convolution with the source profile using fast Fourier
transform (hereafterFFT) coded by Presset al. (1992) and various characteristics
of the simulated light curves are much less time consuming. We are looking for a
simple statistical characteristic of the simulated light curves, which depends on the
source size and duration of observations, which shows differences between various
images of Q2237+0305 and is easy to compare with observational data. We try
several approaches calculating magnification histograms (Mortonsonet al. 2005),
autocorrelation of light curves (e.g., Seitz, Wambsganss and Schneider 1994), and
the dependence of the variability amplitude on observationtime (Gil-Merinoet al.
2005).

In the next Section we describe the simulations of amplification maps and the
methods of obtaining synthetic light curves. Section 3 describes statistical charac-
teristics of the light curves and contains several plots showing their dependence on
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model parameters. As an example we compare our predictions of variability am-
plitude for various Q2237+0305 images with (not fully calibrated) observations of
OGLE III. The discussion of the prospects of statistical approach to observations
of QSO microlensing follows in the last Section.

2. Simulations

We use the macrolens model of Schneideret al.(1988), which gives the dimen-
sionless surface mass densitiesκi and values of shearγi at the images positions.
The surface mass densities of starsκ∗i ≤ κi are not given by the macrolens model
and we consider three different values for each of them:κ∗i/κi ∈ {1,0.5,0.25} , as-
suming that it is the same for all images. In the simulations we use the microlenses
of limited range of masses (m∈ [0.1 M⊙,1 M⊙]) with the Salpeter mass function.

We use the standard angular diameter distances in the concordance cosmo-
logical model with dimensionless mass densityΩM = 0.3, cosmological constant
ΩΛ = 0.7, and the Hubble constantH0 = 70 km/s·Mpc. (For our purposes the pre-
cise values of cosmological parameters have no meaning.) For the galaxy redshift
zL = 0.039 and the source redshiftzS = 1.69, the distances between the observer,
lens and the source areDOL = 152 Mpc,DLS = 1607 Mpc, andDOS= 1666 Mpc
respectively. For a microlens massM, the Einstein ring angular size is given as

ΘE =

√

4GM
c2

DLS

DOLDOS
≈ 7µas

√

M
M⊙

(1)

and in the source plane it corresponds to˜̃rE = DOSΘE ≈ 0.06
√

M/M⊙ pc.
In the calculations we employ the standard ray-shooting method (e.g., Kayser

et al.1986). We construct microlensing maps with the resolution of 1024 by 1024
pixels, covering a square region in the source plane of angular size 40µas, which
corresponds to≈ 0.32 pc. For the characteristic relative source – lens velocity of
5000 km/s as measured in the source plane, it would take about64 years to cross
the width of the map.

For each QSO image and each choice of surface mass density in stars κ∗, we
repeat simulations 8 times, obtaining 8 different raw microlensing maps, each rep-
resented by a matrixA(i, j). The rays are shot into a region in the lens plane which
is much larger than the resulting maps (0.5 mas on a side), which reduces the num-
ber of omitted rays (rays, which would arrive at the map region in the source plane
after deflection in the lens plane outside the shooting region) to ≈ 1%.

The amplification maps for sources of given size and shape areobtained by con-
volution of the raw maps with the source surface brightness profile, represented by
a matrix I(i, j). As already mentioned above, we follow the conclusion of Morton-
sonet al. (2005) considering only one parameter family of sources with Gaussian
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shape and different sizes

I(x,y) ∼ exp

(

−
x2 +y2

2r2
s

)

(2)

wherers is the source size parameter. The convolution can be performed with the
help ofFFT algorithm (cf. Mortonsonet al.2005), denoted here byF symbol:

A = F −1(F (A)∗F (I)) (3)

whereA stands for a convolved magnification map defined on the grid. The con-
volved map can be expressed in magnitudes,M = −2.5 lg(A) and by bilinear
interpolation one can obtain a two parameter functionM (x,y) extending the map
to all locations in the region of original map. The motion of the quasar in the source
plane can be represented by paths(xJ(s),yJ(s)) – separately for each of the images
J ∈ {A,B,C,D}. The parameters measures the length along the trajectory. The
light curve of the imageJ is given by:

mJ(t) = m0(t)+M (xJ(s(t)),yJ(s(t))) (4)

wherem0(t) represents the source apparent magnitude one would measureat the
absence of lensing.

According to the macrolens model (Schneideret al. 1988) all the images are
stretched out azimuthally. In our parametrization these are also the directions of the
x axes on our magnification maps. Suppose the path of the sourcerelative to thex
axis on image A map is denotedβA. Due to the relative orientations of images one
has approximately (cf. Gil-Merino et al.2005)βC = βA+90◦, βB = βA+180◦, and
βD = βA + 270◦. (Trajectories parallel for opposite images and perpendicular for
the next to each other). On the other hand the starting pointsof source trajectories
on different maps are completely unrelated.

3. The Properties of the Synthetic Light Curves

We employ a simplified approach neglecting the internal quasar variability, and
considering each of the images separately. The properties of the light curves are
likely to depend on the duration of observation. To mimic this property we consider
simulated paths of the source of different lengths. The longest path we consider
equals half of the map side. Such a path can always be placed inside the map if
its middle point belongs to the central square region of the map with a side two
times shorter than the whole map. We find such paths choosing their middle points
at random from the allowed region and giving them directionβJ. Every path can
be subdivided into smaller fragments. We consider paths of lengths in the range
s∈ [0.005,0.16] pc and investigate various statistical properties of the associated
light curves for each path length separately.
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The amplitude of flux changes on a path of defined length is the simplest char-
acteristic of variability. Using our simulations we calculate the probability distri-
bution for observing given flux amplitude. The distributions depend on the path
lengths considered, the assumed surface mass density in stars, the image of in-
terest, the path direction, and the source size. The characteristic half-light radius
associated with a black hole of mass≈ 109 M⊙ has the valuers≈ 2×1015 cm, so
it is probably sufficient to consider sources of the sizesrs ∈ [1,4]×1015 cm in re-
lation to Q2237+0305. We consider also larger sources, to get better mathematical
insight into the problem. Examples of cumulative probability distributions of flux
amplitude for some parameter choices are shown in Fig. 1.

Fig. 1. Cumulative probability distributions for flux amplitude. All panels contain the case cor-
responding to image A, source path of lengths= 0.02 pc, the directionβA = 30◦, and source size
rs = 2×1015 cm. Results forκ∗ = κtot are shown on all panels with thick lines, and forκ∗ = 0.25κtot
– with thin lines. (a) The dependence on path length (fors∈ {0.01,0.02,0.04,0.08,0.16} pc – down
to top). (b) The dependence on image considered (A – solid line, B – dotted, C – short dashed, D
– long dashed). (c) The dependence on the source size (rs = {1,2,4,8}×1015 cm – top to down).
(d) The dependence on the path direction (βA ∈ {0◦,30◦,60◦,90◦} – down to top).

Inspection of panel (a) shows that the median flux amplitude increases with
the path length as expected. The dependence on the image (b) results from the
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choice of the path directions for the plots. For this particular choice (βA = 30◦,
βB = 210◦, βC = 120◦, and βD = 300◦ ) the paths C and D meet caustics more
frequently as compared to A and B. Different choice of directions may result in
different order of the plots. Thus changing the direction one can change the relative
amplitudes of flux changes in the pair of images A,B as compared to C,D. The
increase of microlensing induced variability with decreasing source size (c) and
with increasing angle between the source path and shear direction (d) are also as
expected.

We also present probability distributions that a given image of a source of given
size, on a path of given length and direction, is magnified by agiven amount as
compared to the trajectory-averaged value. Examples are shown in Fig. 2.

Fig. 2. Probability distributions for excess magnificationrelative to trajectory-averaged value. (Pos-
itive abscissa values correspond to images brighter than average.) The conventions and cases shown
are the same as for Fig. 1. The curves plotted correspond to normalized probability distributions;
shifting the curves vertically so they all cross the same point atM = 〈M 〉 would restore the ordering
of plots seen in Fig.1.

There are significant differences between the plots obtained for different model
parameter choices, so comparison with magnification distribution of the observed
light curves should give at least some limitations on parameters.
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Next we examine correlations between magnification values measured on a
source path and taken at two points separated by a distanced. We define the 1D
autocorrelation function for source magnification as:

ξ(d) =
〈∆m(s) ∆m(s+d)〉

〈∆m2〉
(5)

where ∆m here stands for a magnification relative to the average magnification
along the path. The averaging in the numerator proceeds withrespect to all pos-
sible pairs of points with given separation belonging to theconsidered trajectory,
and then with respect to all possible trajectories with given direction on all maps
related to given image, and representing magnification for asource of given size.
The averaging in the denominator is similar, with all pointsbelonging to a trajec-
tory replacing all pairs. The examples of autocorrelation function dependence on
various model parameters are shown in Fig. 3.

The dependence of correlations between source magnification at different points
along a trajectory on model parameters is more complicated than for the flux vari-
ations amplitude. Panel (c) shows that the dependence on thesource size is practi-
cally nonexistent (except ford ≤ rs). Dependencies on the image, trajectory direc-
tion, and mass density in stars are not easy to separate.

The expected change of magnification after traveling a distanced is expressible
with the help of autocorrelation function:

〈(m(s+d)−m(s))2〉 = 2〈∆m2〉 (1−ξ(d)) (6)

and the above relation is probably the easiest way to obtain the shape of the correla-
tion function from observations. The measurements are doneat known instants of
time, so the relative source – lens velocity serves as a scaling factor between time
and path intervals.

Using the flux amplitude statistics one can try to fit some of the model param-
eters to actual observations. For fixed source sizers, path lengths, path direction
βA, and surface mass density in starsκ∗, the probability distributions of flux am-
plitudes pJ(∆m) for all four images are given by simulations. We do not show
explicitly the dependence of probabilities on parameters which are kept constant to
shorten the notation. One can find the most likely values of∆mmax

J corresponding
to the maxima of their probability distributions. Since thedistributions obtained in
simulations may not be smooth, and because the observed amplitudes are measured
with a typical error ofδm≈ 0.1 mag, it is safer to use filtered quantities. We define
the smoothed probability distribution ˜pJ as:

p̃J(∆m) =
Z

d∆m′ pJ(∆m′) f (∆m′,∆m) (7)

where we use a Gaussian – shaped filter:

f (∆m′,∆m) = exp

(

−
(∆m′−∆m)2

δm2

)

. (8)
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Fig. 3. 1D autocorrelation function for relative source magnification. We use logarithmic ordinate
to better separate the plots. Results forκ∗ = κtot are shown on all panels with thick lines, and for
κ∗ = 0.25κtot – with thin lines. (a) The dependence on image considered (A – solid line, B – dotted,
C – short dashed, D – long dashed) forβA = 0◦, and rs = 2×1015 cm. (b) Same as in (a) but for
βA = 90◦. (This time trajectories are perpendicular to shear in A andB, and parallel in images C and
D). (c) The dependence on the source size (rs = {1,2,4,8}×1015 cm – down to top) for image A
and path directionβA = 30◦. (d) The dependence on the path direction (βA ∈ {0◦,30◦,60◦,90◦} ) for
image A and source sizers = 2×1015 cm.

For any set of simulation parameters and measured flux amplitudes∆mobs
J , one can

find the likelihood function:

L(rs,s,βA,κ∗) = p̃A(∆mobs
A ) p̃B(∆mobs

B ) p̃C(∆mobs
C ) p̃D(∆mobs

D ) (9)

where the dependence on simulation parameters is implicit in all the expressions in
the RHS. Maximizing likelihoodL gives the best values for parameters.

4. An Example: Preliminary Fit to Five Years Amplitude Measurements

To give an example we use the Q2237+0305 light curves obtained by OGLE
team in seasons 2001–2006. The data are not fully calibratedyet, and probably
would not be useful for more sophisticated tests, but we needonly four light curve
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amplitudes to look for model parameters maximizing the likelihood. Examination
of the data gives∆mJ = 0.62, 1.01, 0.41, and 0.32 for images A, B, C, and D
respectively.

Fig. 4. Low resolution maps of likelihood functions shown in(s,βA) plane for: rs = 2×1015 cm
(upper row), 4× 1015 cm (middle row), 8× 1015 cm (lower row), and for: κ∗ = 0.25κtot (left
column), κ∗ = 0.5κtot (middle column), and κ∗ = κtot (right column). For each panel the dotted
lines correspond to contours drawn at{0.1,0.2, . . .,0.9} of the maximum value, and solid lines – to
{exp(−0.5),exp(−2.)} of maximum. The thick contours approximate one and two sigmaconfidence
regions for single parameter estimation.

We follow the procedure described in the previous Section calculating the like-
lihood function for wide ranges of parameters. We consider path lengths in full
range allowed by the size of magnification maps. We include also sources of un-
reasonably large sizes (up to 30×1015 cm) to investigate broad sample of models.
The path directions are defined byβA ∈ [0◦,90◦] , andκ∗/κtot ∈ {0.25,0.5,1}.

For "typical" parameters we obtain synthetic light curves with amplitudes sig-
nificantly higher than the measured values. For very large source sizes this discrep-
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ancy is diminished, since the synthetic light curves are smoothed out. This kind of
fit requires, however, unreasonably large source sizes, which are in conflict with the
observed fast flux changes. Using the results of early work onthe subject (RB91,
JWP92) we limit ourselves to sources withrs ∈ {2,4,8}×1015 cm. Using these
prior values ofrs, we explore the likelihood dependence on other parameters.

The number ofκ∗ andrs values considered is rather limited. We show in Fig. 4
the dependence of likelihood values on the other parameters(path lengths and path
directionβA) for threeκ∗ and threers values.

In all cases shown the preferred path direction is given byβA = 90◦, which
means that the variability in images A and B is produced by thesource moving
perpendicularly to the majority of caustics, and in C and D – in parallel. The
dependence of likelihood values onβA is rather weak and in some cases even the
one sigma confidence regions reach 0◦. For the path lengths the limits are more
useful, and the preferred values are only weakly correlatedwith other parameters.
Examination of maps in Fig. 4 gives a rough estimate:s= 0.02±0.01 pc, which
corresponds to the source five year travel with the velocity≈ 4000±2000 km/s.

The dependence of likelihood value on surface mass density gives a weak pref-
erence toκ∗ = κtot, but other values considered are within one sigma confidence
region.

5. Discussion

We have obtained several microlensing maps relevant to images A, B, C, and
D of Q2237+0305, using the macrolens parameters of Schneider et al. (1988). We
have considered three possible values of the stars contribution to the surface mass
density in the lensing galaxy,κ∗/κtot = 0.25, 0.5, and 1. We have investigated the
microlensing induced variability of the source images related to the source motion
along paths of different direction and length. We have also included the dependence
of the results on the source size.

We present several statistical characteristics of microlensing induced variability
based on the investigation of the synthetic light curves obtained in our simulations.
The simplest of all is the dependence of variability amplitude on the direction and
length of path traveled by the source. This characteristic can easily be tested – see
below. We also present probability distributions of relative magnification of the
source on a given path, and the shapes of magnification autocorrelation functions
along given direction. The tests involving probability distributions and/or autocor-
relations require large amount of well reduced data, and we skip them to the next
paper.

We present a simple test confronting the observed and simulated variability
amplitudes of the four Q2237+0305 images. For "typical" model parameters the
predicted variability amplitudes are larger than measured. It is not excluded, that
the real variability is in fact higher, since there are off-seasonal gaps in the obser-
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vations lasting typically a few months, however we do not consider this possibility
to be of high importance.

Formally one may avoid the apparent contradiction considering a very large
source. Since the simulated light curves are obtained as convolutions of microlens-
ing maps with source profiles, large sources smooth out the maps lowering the am-
plitudes of variability. Our fits show, however, that for larger sources the preferred
length of source path becomes longer, but the increase is much slower than for the
source size. That means that the characteristic time in which the source travels the
distance similar to its size is longer, and the short time variability becomes slower,
contradicting observations (e.g., RB91). To avoid this contradiction we consider
only "small" sources withrs ≤ 8×1015 cm (RB91, JWP92). The preferred length
of the source path in five years given by our test iss= 0.02±0.01 pc, which cor-
responds to the source velocity≈ 4000± 2000 km/s. Such source velocity can
result from≈ 10 times slower peculiar motion of the lensing galaxy at≈ 10 times
shorter distance. This result is in agreement with the upperlimit on the lens bulk
velocity obtained by Gil-Merinoet al. (2005) for microlenses of the mass 0.1 M⊙ .
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