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ABSTRACT

We present a method to compute microlensed light curves for point sources. This method has the general
advantage that all micro images contributing to the light curve are found. While a source moves along a
straight line, all micro images are located either on the primary image track or on the secondary image tracks
(loops). The primary image track extends from —oo to + oo and is made of many sequents which are contin-
uously connected. All the secondary image tracks (loops) begin and end on the lensing point masses. The
method can be applied to any microlensing situation with point masses in the deflector plane, even for the
overcritical case and surface densities close to the critical. Furthermore, we present general rules to evaluate
the light curve for a straight track arbitrarily placed in the caustic network of a sample of many point masses.

Subject headings: gravitational lensing — methods: numerical

1. INTRODUCTION

After the first gravitational lens 0957+ 561 was found by
Walsh, Carswell, & Weymann (1979), Chang & Refsdal (1979)
predicted that the brightness changes of a quasar can occur
caused by the gravitational lens effect of a single star located
between observer and source.

This effect was later named microlensing since the stars in the
deflector plane may split the image of the source into micro
images which are separated by a few micro-arcseconds. These
images are not directly observable but the (dis-)appearance of a
pair of micro images yields large brightness changes in the
macro image of the lensed quasar which are in fact observable.
Each macro image is in this case the unresolved sum of micro
images.

To compute the light curve of a given track in the source
plane (observer plane), we have to solve the lens equation (see
below) for each point of the track. This is easy to do for the
case of one star plus shear in the deflector plane, since in this
case we can transform this problem to a polynomial of fourth
degree. If there is more than one star in the deflector plane, it is
not known when a new pair of microimages appears or disap-
pears. The lens equation has to be solved numerically. But one
can never be sure that all solutions have been found.

Paczyfiski (1986) computed light curves for different den-
sities of stars in the deflector plane. He showed that one needs
a large amount of computer time to be relatively sure that no
(bright) image was missed. Since this method is very time con-
suming, nobody made improvements on this field. Another
computing time-intensive method was developed by Kayser,
Refsdal, & Stabell (1986). They use the ray-shooting method to
compute light curves for extended sources. This is a very
straightforward way to obtain a light curve, and some numeri-
cal efforts were done to speed up this method (cf. Schneider &
Weiss 1987 and Wambsganss 1990). Nevertheless, this method
has the disadvantage that the computing time increases quad-
ratically with the inverse source radius. In fact, Young (1981)
might be the first who computed microlensed light curves for
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530

extended sources. But unfortunately he gave very few details
about his numerical technique.

In 1990 it was shown that for some cases it is useful to use
complex quantities instead of two-dimensional vectors for the
lens equation of point masses. Using complex quantities a
parametric representation of the caustics can be obtained
which enables one to compute the whole caustic network of a
sample of point masses (Witt 1990). This yields a very efficient
method to compute statistics of high magnification events for
different samples of point masses (see Witt 1991 and Witt,
Kayser, & Refsdal 1992).

In this paper, a new method to compute the light curve of a
sample of point masses is presented. This method has the
advantage that one is sure that all images which contribute to
the light curve have been found without wasting computing
time. A similar method was found independently by Lewis et
al. (1992). But their numerical technique to compute the light
curves is very different from the method described here.

2. THE LENS EQUATION

Microlensing effects are usually described by the normalized
lens equation which was first derived by Paczynski (1986) and
Kayser et al. (1986). The lens equation describes a mapping
from the deflector plane z = (x, y) onto the source plane { =
(& n). (Bold letters will always describe two-dimensional
vectors in this paper.) In this case the normalized lens equation
is given by

25— 2

é; 14y 0
<n>_< 0 1—v> +Slgn(a)zm|l z|?

where 7 is the normalized shear, z; is the position of the ith star
and m; is the mass of the ith star in units of the solar mass
m; = M;/My. ¢ denotes the normalized surface density in
stars. It is given as o = g,/(1 — ¢.), where o, is the surface
density of stars in units of the critical density Z_,;, and o, is the
surface mass density of continuously distributed matter, also in
units of X_;,. For the overcritical case (o, > 1), the normalized
surface density ¢ becomes negative.

The total magnification of a point source is given by the sum
of the individual magnifications of each micro image. The mag-

¢ (1)
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nification of an image is given by the inverse of the determinant

of the Jacobian of the lens equation (1). Now we obtain
1

|det J|

Z=Zk

oS, 1) = Z M = z 2
k k

where z, is the position of the kth image in the deflector plane.

The brightness variations (in magnitudes) in the light curve

relative to the mean magnification {u) = 1/|(1 — ¢)*> — y*| are

given by

Am = —2.5 log (to/<HD) - ©)

The critical curves in the deflector plane are defined by
det J = 0, and the caustics are a mapping of the critical curves
onto the source plane. A pointlike source placed on a caustic is
infinitely magnified. The caustics divide the source plane into
areas with a different number of images. If a caustic is crossed
by the source (observer), the number of images changes by 2.

It is well known that the number of images (solutions) of
equation (1) can be very different depending on the position of
the source (&, #) and the normalized surface density o of the
stars. Assuming n point masses in the deflector plane, we
obtain a set of real solutions (x, y);,, i = 1, ..., s, for equation
(1) which are the positions of the images in the deflector
plane. For a given sample of point masses, the number of real
solutions s, depends on the position (¢, #) of the source in
the caustic network. Recently Petters (1992) has shown that
s(& n) = n+ 1 for any given sample of point masses (¢ > 0)
and an arbitrary position of the source. In Witt (1990, 1991)
it was shown that there also exists a set of complex solutions
(x+ix, y+iy), j=1, ..., s(& n) for the normalized lens
equation. (These solutions can be considered as complex
zeros of a real polynomial.) The main point is that the sum
s = s, + s, of the real and the complex solutions is constant.
The sum is given as s,(&, ) + s.(& 1) = n* + 1 for no external
shear (y = 0) and s,(¢, 1) + s.(§, ) = (n + 1)? assuming a shear
term (y # 0) (see equation [1]).

3. METHOD

In principle we can search for all real and complex solutions
and use only the real solutions to evaluate the light curve. If we
do this, we are sure that we have found all real solutions, but
we have to waste a lot of computing time searching for
complex solutions. We know from experience that usually the
number of real solutions is about n + 1 to 2n. In contrast, the
number of complex solutions is of order n?, so this method is
not time efficient. We show now another way to find all real
solutions using the topological properties of the lens mapping.

3.1. Some Simple Examples

To introduce the new method we consider first the simplest
case of a point mass with external shear (Chang & Refsdal
1979, 1984). In Figure 1 we show the typical diamond-shaped
caustic of a point mass lens with external shear (here: y = 0.3)
in the source plane. In this paper we assume that the source
always moves on a straight line. In the case of static lens con-
figuration, it is sufficient to move only the source to simulate
the change in relative position of the source, lens and observer.
In Figure 1 five different source tracks are indicated by dashed
lines. To apply this method, we have to assume that the tracks
are continued over a large range (mathematically speaking
from —oo to +o0). In Figure 2 we show the critical curve
(dashed line) and the image tracks (solid lines) which correspond

source plane
1 —T—

0.5+

-0.5

_1_1

F1G. 1.—Caustic of a single star plus shear (y = 0.3) is shown. Five tracks,
a-e, are indicated by dashed lines. The arrow indicates the direction of the
source.

to the first four source tracks a—d in Figure 1. The image tracks
are composed of the solutions of the normalized lens equation
for each point on the track in Figure 1. For clarification on
each track four positions (1-4) are indicated. They correspond
to four different instants of time. In Figure 2 the solutions of
these positions are indicated by the same number. These solu-
tions for each instant are the images created by the gravita-
tional lens. The total and the individual brightness (variation)
of each image are shown in Figure 3 (see arrows 1-4). The
tracks a—d and Figures 1, 2, and 3 are now discussed in detail.

Track a—It is well known (Chang & Refsdal 1984) that a
source placed outside a caustic of a star with shear (i.e. far
away) produces two images. One image has negative parity
and is close to the star and very faint (see Fig. 3a, bottom
panel). (The parity of an image is given by the sign of the
determinant of the Jacobian of the lens equation; see, e.g.,
Blandford & Narayan 1986). The other image has positive
parity and contributes most of the brightness of this lens
system (see Fig. 3a, middle panel). (Fig. 3a [top panel] shows
the total brightness [magnification] of the lens system.) If the
source moves from the bottom to the top on track a in the
source plane (see the arrow in Fig. 1), then the bright image
moves from the bottom to the top as well. It is named the
primary image track (I); see Figure 2a. The other track is named
the secondary image track (II). In this case, the faint image
moves counterclockwise on a loop (compare the numbers 1-4
on track a in Fig. 1 and Fig. 2a and look at the arrows). If the
source started at infinity, the faint image would start to move
at the position of the star. Since for convenience a finite track
in the source plane is used there is a small gap in the loop close
to the star.

Track b—The b track is shifted parallel to the a track in the
source plane and crosses the caustic. The source moves from
the bottom to the top as on track a. We can see in Figure 2b
that the primary image track crosses the critical curve as well.
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F1G. 2—The image tracks due to each source track in Fig. 1 are shown. The critical curve is indicated by a dashed line. The dots labeled by a number denote the
solutions (images) for the positions indicated by the same number in Fig. 1. The arrows indicate the direction of motion of the images assuming the source in Fig. 1
moves from the bottom to the top on the source tracks. The asterisk denotes the position of the star.

The arrows on the image tracks indicate the direction of
motion of the images. Pairs of images appear and disappear (at
different instants of time) at the critical curve, as indicated by
the arrows. To compute a complete light curve, the trick is to
move in one direction on the image tracks, i.e., not to change
the direction of motion on the image track. The (numerical)
way to do this is to vary the position of the source step by step
along the source track. Simultaneously the variations of the
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image positions can be found by an iteration function (see § 4).
This job is easy to do in case a. But in case b we have to cross a
critical curve. Let us assume that we are moving up from the
bottom along the image track in Figure 2b and that we are
crossing a critical curve in the deflector plane for the first time.
Then we have to move backwards in the source plane! In
Figure 3b five different light curves are shown. The light curve
at the top is the total sum of the four light curves below. Each
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F1G. 3.—At each figure the light curve at the top presents the total brightness variation of all images (in a magnitude scale). The light curves at the panels below
present the brightness variations of the individual image tracks indicated by a roman number in Fig. 2. The arrows at the top labeled by a number correspond to the

position of the source labeled by the same number in Fig. 1. The arrows on the left side below show the direction of motion on the source track during the
computation.

of the four light curves below belongs to a part (I-IV) of the
image tracks. In Figure 3b the direction of motion on the
source track is indicated on the left-hand side. The light curve
in the middle panel, for example, belongs to part II of the
image track inside the critical curve in Figure 2b and so on. If
we cross the critical curve once more, we have to turn around

the

direction of motion in the source plane again (move

forward). That means that we move 3 times back and forth
between the interval of the high-magnification events in the
light curve in Figure 3b. It is obvious to see in which range four
images and in which range two images contribute to the total
brightness of the light curve at the top panel. We obtain these
individual light curves of each image (second, third, and fourth
panel) moving straight on the primary image track but 3 times
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back and forward in the interval on the source track. The
fourth light curve (bottom panel) is obtained by moving along
the secondary image track (IV).

Track c—In Figure 2¢ the secondary image track becomes
larger and almost touches the critical curve. Simultaneously
the primary image track and the secondary track get closer to
each other. Considering the arrows in Figure 2c¢ we have to
move backward on the source track when we move against the
direction of the arrows on the image tracks. We have to move
forward on the source track when we move in the same direc-
tion as the arrows on the image track. Since the images
(dis-)appear only at the critical curve, we have to turn around
the direction of motion on the source track whenever we
cross a critical curve on the image track (see the light curves
in Fig. 3c¢). v

Track d—In Figure 2d the two image tracks are merged
together into one. A merging (or separation) of two tracks is
possible only when the track in the source plane is tangential
to a point of the caustic. There is a source track intermediate
between ¢ and d which is tangential to the caustic at a point
close to the cusp. In that case the secondary and primary image
tracks merge. In Figures 4 and 5b and 5Sc this case is easier to
see. The proof for that is given in § 3.3. If the track d was
shifted across the track e to the left, then the image track would
separate again into a primary and secondary image track.
Then we would get figures similar to Figures 2a-2c. To
compute the light curve we have to move in one direction on
the image track (see Fig. 3d). If we cross the critical curve the
first time, we have to move backward on the source track. In
this case we move backward until we reach again the point
where we started in the source plane (compare the numbers on
the track in Fig. 2d and see the second and third panels in Fig.
3d). Simultaneously we get close to the star in the deflector
plane. To move in one direction on the image track, we have to
cross over the star. Simultaneously, we have to start now from
the top of the source track and move backward on the source
track (compare the numbers on the image track and see the
fourth panel in Fig. 3d). If we cross once more the critical curve,
we have to turn around the direction of motion on the source
track (that means we move forward). Finally, we reach again
the point at the top in the source plane where we started after
we crossed the star (see bottom panel in Figure 3d).

In Figure 4 the same caustic is shown as in Figure 1. Three
source tracks are indicated, labeled a, b, and c. The track b
crosses the caustic 4 times, and tracks a and c crosses the
caustic 2 times. In Figures 5a—5c, the corresponding image
tracks are shown. Figure 5a shows that in this case the second-
ary and not the primary image track crosses the critical curve.
In Figures 5b and Sc it is obvious to see that the primary and
secondary image tracks merge when the track in the source
plane is tangential to the caustic. The light curves for the three
tracks are shown in Figures 6a—6¢. The arrows indicate again
the direction of motion of the images assuming that the sources
moves from the left to the right side of the tracks in Figure 4.
The image tracks are computed in the same way as described
above.

In Figure 7 we see the caustics of a two-point mass lens
without shear. Two tracks are indicated at the top, labeled a
and b. In Figures 8a and 8b, the corresponding image tracks
for each case are shown. In this case we obtain three critical
curves (dashed lines). If the source is positioned outside the
caustics, we obtain three images, one of positive parity and two
of negative parity close to each star (see, e.g., Schneider &
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F1G. 4—Caustic of a single star plus shear (y = 0.3) is shown. Three tracks
a—c are indicated by dashed lines.

Weiss 1986). Thus we obtain in Figure 8a one primary image
track, but two secondary image tracks. In Figure 8b it is shown
that the two secondary image tracks are merged. (Shifting the
source track a to the track b in Fig. 7, it becomes once tangen-
tial to one point of the caustic. At this moment, the secondary
image tracks merge together; see the proof in § 3.3.) For clari-
fication, four positions (instants of time) are indicated in each
case on the source tracks in Figure 7. The image positions
corresponding to these source positions are indicated by the
same number in Figures 8a and 8b. In Figures 9a and 9b we see
the light curves which correspond to the source tracks in
Figure 7. The arrows in the light curves labeled by the four
numbers correspond to the positions on the track in Figure 7
labeled by the same numbers.

We will see now in the next examples that the features just
described in these simple cases completely describe what kind
of things can happen in more complicated situations and that
these empirical rules are sufficient to compute a light curve due
to lensing by a collection of point masses.

3.2. The General Case

After discussing the one- and two-point mass gravitational
lens in detail, we extend our results to the general case of a
gravitational lens with n point masses.

We assume an (infinitely long) track in the source plane
which divides the plane into two parts. The track shall be
placed in such a way that all caustics are on one side. Then we
can shift the track to infinity without crossing a caustic. This
means that for each point on the track in the source plane we
obtain n + 1 solutions in the deflector plane. This is the
minimum number of solutions (see Petters 1992). Since we do
not cross any caustic, the number of solutions has to be the
same for each point on the track in the source plane. Further-
more, we can conclude that in this case we obtain one primary
image track and n secondary image tracks, each containing one
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F1G. 5.—The image tracks due to each source track in Fig. 4 are shown. The
critical curve is indicated by a dashed line. The arrows indicate the direction of
motion of the images assuming the source in Fig. 4 moves from the left to the
right side on the source tracks. The asterisk denotes the position of the star.

star. All secondary image tracks must be separated. In a
gedanken experiment, we can always shift the track so far away
that the radius of each loop is smaller than the distance to the
neighboring star (considering also eq. [12] below) and as long
as the track does not get tangential to a caustic no two image
tracks can merge (see the proof in the next section).

In the general case of an arbitrary straight track in the
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source plane we obtain one primary image track and n or fewer
secondary image tracks. Each secondary image track must be
“connected ” with one or more stars, i.e., each secondary image
track approaches one or more stars asymptotically while the
source is moved to infinity.

To evaluate the light curve we need general rules. For conve-
nience we use a finite track in the source plane. The track has a
starting point (g, and an end point {,,4. These two points
should be far away from any caustic. For computations of

light curve
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F1G. 6.—Light curves of the three tracks a—c indicated in Fig. 4 are shown
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F1G. 7—Caustics of a two-point mass lens [z, = —z, = (0.495, 0); y = 0]
are shown. Two tracks a and b are indicated by a dashed line.

microlensing effects usually the stars (point masses) are ran-
domly distributed in a unit circle. To obtain the normalized
density ¢ inside the circle, the coordinates of the stars are
scaled up with a factor (X;m;/|c|)2. As a rule of thumb
for this case it is sufficient to choose |{ul~|lenal &
2|1 = o|(Z;m/0)'"? (for y =0) O |{yarl ~|{cal > 1. Since
the starting point is assumed to be outside the caustic network,
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F1G. 9.—The light curves of the two tracks a-b indicated in Fig. 7 are shown.
The labeled arrows correspond to the position labeled by the same number in
Fig. 7.

we obtain n + 1 starting solutions for the image tracks. The n
starting position close to the stars (which belongs usually to
the secondary image tracks) are well approximated analytically
(see eq. [13] below). In general there is one solution (starting
position) of positive parity for the case |y| < 1 which belongs
to the primary image track. For the case |y| > 1 there are only
starting solutions of negative parity.

Now the (computing) rules for the general case are pre-
sented:

1. First, the primary image track has to be computed.

2. If a critical curve is crossed during the computation while
following the image track, turn around the direction of motion
on the source track.

3. If case 2 happens an odd number of times (that means we
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F1G6. 8—The image tracks corresponding to each track in Fig. 7 are shown. The critical curves are indicated by dashed lines. The numbers denote the solutions
(images) for the positions indicated by the same number in Fig. 7. The asterisks denote the position of the stars.
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have to move backward on the track in the source plane), the
starting point in the source plane is reached again. Simulta-
neously a starting point of negative parity in the deflection
plane very close to a star is reached. Cross the star and move
backward from the other side of the track ({.,q) in the source
plane.

4. All secondary image tracks can be computed in arbitrary
order. Therefore we have to use the n starting points close to
the stars and to move on all these image tracks which are
connected to each starting point in the deflector plane. If case 3
happened and a starting point of an (original) secondary track
is reached, do not use these starting points again during the
computation. These starting points (in the deflector plane)
have to be excluded for case 4.

5. The computation for every image track is finished only
when the end point in the source plane is reached.

These rules are complete and there can not exist loops
(secondary image tracks) which are not connected with a star.
Therefore, a proof is shown in the Appendix, and another short
proof is given in Lewis et al. (1992).

The rules are used to compute the light curve for a sample of
10 point masses. For this case, 10 stars are randomly distrib-
uted in a unit circle. In Figures 10a and 11a (top panels), the
caustic network for ¢ = 0.4 and o = 0.8 (y = 0) is shown. Fur-
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thermore in each case a source track is indicated by a dashed
line. [To obtain these densities o the coordinates of the stars
are scaled up with the factor (10/| o |)*/2.] In the bottom panel
the light curves corresponding to each track are shown. In
Figures 10b and 11b the critical curves (dashed lines) and the
corresponding image tracks (solid lines) are shown. The gaps
close to the stars (see the asterisk) appear because we used a
finite track in the source plane.

We see that the number of intersections of the image tracks
with the critical curve is equal to the number of high-
magnification events at the corresponding light curve. For
large samples with densities close to 1, we expect a large
number of high-magnification events. That means that the
image tracks must cross the critical curves the same times. This
yields rather complicated image tracks as shown in Figure 11b.

This method can also be used for the overcritical case
(0 < 0). In Figure 12a (top panel) the caustic network for the
case ¢ = —0.4 for the same sample as in Figure 10b is shown.
In this case it is absolutely necessary to find all images because
there are intervals in the light curve where only faint images
contribute to the light curve (see Fig. 12a, bottom panel). The
rules are the same as in the case ¢ > 0.

3.3. Merging of Two Image Tracks

We consider now the case when the primary track merges
with (or separates from) a secondary track or when two sec-
ondary tracks merge (or separate). We prove that this happens
only if the track (straight line) in the source plane is tangential
to a caustic point of the caustic network.

We consider a linear function in the source plane # = aé + b
with arbitrary constants a and b. The image tracks in the de-
flector plane are given by the implicit function f(x, y) = a&(x, y)
+ b — n(x, y) = 0 using the normalized lens equation (1). Two

deflector plane
L e e e L B R s S Sy B B S B

| B

Fic. 10b

F1G. 10—In Fig. 10a (top panel) a part of the caustic network of a sample of 10 stars (¢ = 0.4, y = 0) is shown. A track is indicated by a dashed line. In the bottom
panel, the light curve corresponding to the track is shown. In Fig. 10b the image tracks due to the track in Fig. 10a are shown. The critical curves are indicated by

dashed lines.
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deflector plane
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F1G. 11.—In Fig. 11a (top panel) a part of the caustic network of a sample of 10 stars (¢ = 0.8, y = 0) is shown. A track is indicated by a dashed line. In the bottom
panel the light curve corresponding to the track is shown. In Fig. 11b the image tracks due to the track in Fig. 11a are shown. The critical curves are indicated by

dashed lines.

image tracks merge when a tangential vector at the image
tracks vanishes. For a merging track we obtain the condition

o ok  on
‘ -_9__ = 4
Ximage track ay a ay ay ( )
/A S
Yimage track ax =a ax - 6x - 0 ° (5)

These two equations can only be true if the two equations are
linearly dependent; that means

o on
Jdy 0x

But equation (6) is identical to the determinant of the Jacobian
of the lens equation and gives the condition for the critical
curves. That means that two image tracks can merge only at a
critical curve.

We only have to prove now that the linear track in the
source plane must be parallel to the corresponding point on
the caustic. Therefore we consider a tangential vector T, at the
caustic. It is given by (see Chang 1984 and Kayser & Witt
1989)

det 4 = ——==0 (6)

_6detJ

T, T, oy
= = = = 7
I <T> IT. J(T) T odets | @

0x

where T, is the corresponding tangential vector at the critical
curve. If equations (4) and (5) are true then the following vector
product must vanish:

T; 1 0
T, x|a|= 0 . ®)
0 0 Tea—T,

Inserting equation (7) in the third component of the vector we
obtain

98 o¢ on on
a[ax »+ dy T”] I:Ox =+ dy %

g% _n o8 _ oy _
—[aax 6x:|T"+[a6y ay]Ty_O' 9

It was not mentioned that we have to assume that the tangen-
tial vector at the caustic is well defined. This assumption holds
at a fold caustic since T, # 0. But at a cusp we obtain T, =0
which means the direction of the tangential vector is not
defined. But we can treat this point as a removable singularity.
Therefore we define that a given track is tangential to a cusp
when the track and the cusp point in the same direction.

4. NUMERICAL METHOD

For the computation of the image tracks, it is not absolutely
necessary but substantially more convenient to use complex
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F1G. 12—In Fig. 12a (top panel) a part of the caustic network for the overcritical case of a sample of 10 stars (¢ = —0.4, y = 0) is shown. A track is indicated by a

dashed line. In the bottom panel, the light curve corresponding to the track is shown. In Fig. 12b the image tracks due to the track in Fig. 12a are shown. The critical

curves are indicated by dashed lines.

quantities. Using the complex quantities z = x + iy and
{ = & + in the normalized lens equation (1) can be written as

m;

{ =z + yz + sign (0) i (10)

- -9
i=12i — 2

where Z is the complex conjugate of z.

To compute all image tracks we need the starting points in
the deflector plane corresponding to the starting point on the
track in the source plane. As discussed above for the case
|7} < 1 there exists one starting point of positive parity which
belongs to the primary image track and n starting points of
negative parity very close to each star.

To find the solution for the starting point of positive parity
which belongs to the primary image track, a fixed point iter-
ation method is used. (To distinguish between the position of
the stars z; and the number of iterations, the index of the
number of iterations is put into brackets.)

Zk+1) =f(z_[k])
d m

= Cslart - yE[k] - Z . . (11)

i=1Zi — Z

This method converges very fast and a rough estimate of zj, is

adequate. (This method is only convergent if | 9f/0z | < 1 which
is only true for images of positive parity. For the case [y| > 1
we have to use eqn. [14] below to find the starting point of the
primary image track.)

The n positions of negative parity close to the stars can be
estimated in the following way. Assuming | {,,.| > 1 each solu-
tion is at positionz = z; + €, = 1,...,n, where | ;| < 11is very
small. Now we obtain

n
s .z m; m
laam=21+€+yEG+E)+ Y — =+
i=12i— 21— € Z1—Z
il

(12)

If we drop the € and solve the equation for z we obtain fairly
exactly the n starting positions of negative parity:

n ms

2 = i
Zzzl_ml/liCstaﬂ_Zl_'yzl_zz Z:| l=1,-~,n-
i=1%4i = 4

i*l (13)

After we have found all the starting points we have to evalu-
ate the primary image track first. Now we have to move step by
step on the track in the source plane and simultaneously we
have to compute the solutions on the primary image track. The
steps are defined as {; = {0 +JAL, j =1, ..., N where Al =
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(ena — Caar)/N. N has to be chosen very large and usually
about 1000 steps per unit length in the source plane are taken.

To obtain the solutions on the image tracks a two-
dimensional Newton iteration function is used which was
transformed into the complex manner. For the complex lens
equation (10) we obtain

1 ¢
Zik+1] = 2y — det 7 (C - = C) (14)
where
detJ=1-— %% (15)

is the determinant of the Jacobian (see Witt 1990). The iter-
ation function in equation (14) can always be used even very
close to the critical curve.

The most difficult case is to cross the critical curve (and turn
around the direction of motion in the source plane) since there
are two positions of convergence very close together. It is
known that if the source crosses the caustics a pair of micro-
images appears at the critical curve which have the same
brightness (magnification), but different signs of the determi-
nant of the Jacobian (see, e.g., Chang 1984 and Blandford &
Narayan 1986). (If the source moves away from the caustic, one
image becomes usually very faint and the other remains
bright.) To find the solution on the other side of the critical
curve, we have to move on the isolines of same magnification,
but opposite parity. These isolines of constant magnification in
the deflector plane are given by the following parametric repre-
sentation. (This parametric representation is very similar to
that of the critical curves where det J = 0; compare Witt 1990).

d .
a—gze"”,/l—(i)ldetJl; o € [0, 2n).

Using this equation and varying the parameter ¢ smoothly, we
obtain different values of z, where one of these values is the
solution we searched for. To find this solution we only have to
check if equation (10) is fulfilled.

(16)

5. DISCUSSION

A new method is presented in this paper which enables one
to compute microlensed light curves for point sources. This

WITT
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method has the general advantage that one finds every image
which contributes to the light curve without wasting comput-
ing time. There are several examples discussed. The trick to
compute a light curve of a limited track in the source plane is
to continue this track to infinity. The solutions in the deflector
plane of this (infinitely long) track are continuous image tracks
without gaps. A straightforward method to compute all image
tracks is presented. These image tracks finally yield the total
magnification one obtains at each point on the track in the
source plane.

Furthermore a proof is given that two of these image tracks
can only merge (or separate) when the track in the source plane
is tangential to a point on the caustic network.

We hope that this method will enable us to investigate in
more detail the structure of the light curves and the properties
of microlensing. This method is not only useful to compute
light curves for point sources. It can be used in different ways
to obtain light curves for extended sources from the light
curves of point sources. We like to mention some further exam-
ples where this method could be applied:

1. It can be used to compute the probability P(u > u,) to
obtain a magnification greater than u, at a random point in
the observer plane (see also Paczynski 1986 and Wambsganss
1992). For (very) large u, this result is obtained analytically
(see Schneider 1987 and Peacock 1986). But it is still not under-
stood in what kind of ranges of magnification these formulae
can be applied. Only for low surface densities were first investi-
gations done (see Rauch et al. 1992).

2. The influence of cusps on the frequency of high-
magnification events (see Wambsganss, Witt, & Schneider
1992) and the magnification cross section of a cusp can be
computed by this method. These numerical results could be
compared with the analytical investigations by Mao (1992) and
Schneider & Weiss (1992).

It is a pleasure to thank Tomislav Kundi¢, Bohdan Paczyn-
ski, and Joachim Wambsganss for their careful reading of the
manuscript and many helpful suggestions. This project was in
part supported by NASA grants NAGW-2448 and NAGS5-
1901 and in part by a research fellowship of the Deutsche
Forschungsgemeinschaft (DFG) under Az. Wi 1122/1-1.

APPENDIX

We show now that all loops (secondary image tracks) must be connected with at least one star. Since Lewis et al. (1992) give a very
short proof of that, only a short description of another proof with a very different viewpoint is given.

For the proof we use equation (A3) in Witt (1990). This equation maps all complex and real images on one two-dimensional plane.
That means that we obtain additional image tracks from the complex (not observable) images. In this case the number of images is
conserved. No images can appear or disappear. As mentioned before the total number of images is always n? 4 1 for y = 0 or
(n + 1) for y # 0, because equation (A3) of Witt (1990) is equivalent to a complex polynomial of degree n? + 1 or (n + 1),
respectively. (n is the number of stars in the lens plane.)

The proof is described for the case of one star plus external shear. In this case we obtain for equation (A3) (Witt 1990) (¢ > 0)

0=+ @ =902 + @+ =)+ =290z —y=0; (A1)

see also Mao (1992, eq. [4]). Figures 13a and 13b show the image tracks of equation (A1) for the source tracks a and b of Figure 1.
Comparing Figure 13a with Figure 2a, one finds two additional image tracks which belong to the two complex solutions. The
number of (real plus complex) images is always four in this case. If we move the source to infinity in Figures 13a or 13b, two images
(solutions of eq. [A1]) move also to infinity and two images get close to the star.
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FIG. 13.—The image tracks due to source track a and b in Fig. 1 are shown. In contrast to Figs. 2a and 2b all image tracks (complex and real solutions) are shown
(see the explanation in the Appendix). The critical curve is indicated by a dashed line. The arrows indicate the direction of motion of the images assuming the source
in Fig. 1 moves from the bottom to the top on the source tracks. The asterisk denotes the position of the star.

In general if we move the source to infinity it can be shown that for y = 0, n images get close to each star and one image moves to
infinity and for y # 0, n + 1 images get close to each star and n + 1 images move to infinity. That means that all image tracks of
equation (A3) of Witt (1990) are connected with a star or are infinite long tracks which can be connected with one or more star.
Additional loops can never appear because the number of images is conserved. But this means in particular that all real image tracks
which belong to the observable images must be connected with a star or must be infinitely long. We already showed that there can
only exist one real infinitely long image track. That means that all secondary image tracks must be connected with a star.
Comparing Figure 13b with Figure 2b we see that the complex images convert into real images (and vice versa) at the critical curve.
An exchange of images (real to complex or vice versa) is only allowed at the critical curve. In Figure 13b there are two cases where
two image tracks cross each other at the critical curve. At the top cross, two complex solutions merge and convert into real solutions
and separate again. At the cross below, the opposite situation happens.
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