Abstract
Eruptions of classical novae occur in binary systems consisting of a white dwarf (primary) and a non-degenerate companion, usually a main-sequence star, subgiant, or red giant (secondary). The mass from the secondary is transferred – via Roche lobe overflow or/and wind – to the white dwarf surface. As the mass of accreted gas reaches a critical value, a thermonuclear runaway is triggered leading to a Type Ia supernova. Eruptions of classical novae are also sources of high-energy gamma-rays. Novae expel matter out into space, enriching the interstellar medium in heavy elements, including lithium.

Nova rates
Only a (small?) fraction of all novae could be detected by the OGLE survey. In order to find a value of the nova rate, measurements are much more accurate than any previous estimates of this kind thanks to many years’ monitoring of the Galactic bulge and Magellanic Clouds by the Optical Gravitational Lensing Experiment (OGLE) survey.

Post-novae
Our knowledge of nova systems long after (or before) eruption is still far from complete, mainly because of a lack of observational data. For example, only T/1 of pre-1980 novae have been identified in quiescence. Studies of post-novae, particularly eclipsing ones, can provide direct verification of evolutionary scenarios (e.g., liberation of cataclysmic variables). Another open question is whether white dwarfs in nova binaries grow in mass to eventually explode as Type Ia supernovae.

A Search for Missing Eruptions
Nova eruptions have a large diversity of shapes and timescales. They can be generally described in terms of a “universal decline law” as broken power-law curves. Additionally, a variety of secondary features may be superimposed on the monotonic nova decline: plateaux, dust dips, oscillations, secondary maxima, etc. A search for nova eruptions is nonetheless relatively easy.

The curious case of OGLE-MBR133.25.1160
During a search for erupting variables toward the Magellanic Clouds, I found a peculiar star OGLE-MBR133.25.1160. Its light curve does not resemble that of a typical dwarf nova and outbursts are similar to that seen in classical novae. With the average inter-outburst time of 330 d, it was a candidate for the ultra-fast recurrence time nova.

Nova rates
Only a (small?) fraction of all novae could be detected by the OGLE survey. In order to find a value of this efficiency factor, one has to make essentially one assumption about the nova distribution, namely, that it follows the luminosity density of a given galaxy. This assumption is fulfilled for M31 and other neighboring galaxies.

Acknowledgements
PM is supported by the “Diamond Grant” No. DE2013/01/4743 funded by the Polish Ministry of Science and Higher Education. This work has been supported by the Polish Ministry of Science and Higher Education through the program "Ideas Plus" award No. MP2012 000162. The OGLE project has received funding from the National Science Center, Poland, grant MAESTRO 2014/14/A/ST9/000121 to Andrzej Udalski.