V/V_m method for small planet microlensing events

Udalski, A. et al. 2018, ACTA ASTRONOMICA, 68: 1-42.

Statistical Journal Club 21st April 2022

Makiko Ban

Introduction

Microlensing events with $q < 10^{-4}$

Retrieved from OGLE web

- → Detectability of $q < 10^{-4}$ events?
- → Mass function of $q < 10^{-4}$ lenses?

V/V_m method

- Kafka (1967)
- Schmidt (1968)
- Lynden-Bell (1971)

Ratio for the distribution of "detectable" samples as a probability

Integrated flux about the distance from the source to detector (*r*)

Integrated flux about the detectable distance limit (*r*_m)

Acceptable samples : $r < r_m$

$$\langle V/V_{m} \rangle = \frac{\int_{L_{min}}^{L_{max}} dL \,\phi(L) \int_{0}^{r_{m}(L)} (V/V_{m}) 4 \,\pi r^{2} \rho_{0} dr}{\int_{L_{min}}^{L_{max}} dL \,\phi(L) \int_{0}^{r_{m}(L)} 4 \,\pi r^{2} \rho_{0} dr}$$

L = Luminosity $\phi(L) = \text{Luminosity function}$ $\rho_0 = \text{uniform density}$

For equally distributed samples :

$$\langle V/V_m \rangle \rightarrow \frac{1}{2} \qquad \sigma_{\langle V/V_m \rangle} \rightarrow \frac{1}{\sqrt{12N}}$$

N = size of samples

V/V_m for microlensing

V/V_m for microlensing

Criteria for finding Q_{min} :

- $\cdot \log q < -4$
- $\sigma(\log q) < 0.15$
- No alternate solutions with $\Delta \chi^2 < 10$ and $\Delta \log q > 0.3$

Microlensing events with $\log q < -4$:

(1) OGLE-2005-BLG-169
(2) OGLE-2005-BLG-390
(3) OGLE-2007-BLG-368
(4) MOA-2009-BLG-266
(5) OGLE-2013-BLG-0341
(6) OGLE-2016-BLG-1195
(7) OGLE-2017-BLG-0173
(8) OGLE-2017-BLG-1434

(1) OGLE-2005-BLG-169

$$q = 6.1 \times 10^{-5}$$

→ 0.3 mag offset for OGLE alert

(2) OGLE-2005-BLG-390

(3) OGLE-2007-BLG-368

(4) MOA-2009-BLG-266

(5) OGLE-2013-BLG-0341

(6) OGLE-2016-BLG-1195

(7) OGLE-2017-BLG-0173

(B) $q = 2.5 \times 10^{-5}$

(A) $q = 6.5 \times 10^{-5}$

15

(8) OGLE-2017-BLG-1434

 $q = 5.8 \times 10^{-5}$

Power law of the mass function

Final solution

$\log_{10} q$	р	reference
> -1.4	0.32 ± 0.38	Shvartzvald et al. (2016)
-4.9 ~ -1.4	-0.50 ± 0.17	
≥ -3.75	-0.93 ± 0.13	Suzuki et al. (2016)
< -3.75	$0.6^{+0.5}_{-0.4}$	
< -4	$1.05^{+0.75}_{-0.68}$	Udalski et al. (2018)

Summary

 V/V_m method is a probability assumption

- Integrating effective parameter distribution (\vee)
- Taking the volume ratio to the maximum potential (V/V_m)
- Ideal mean ratio reaches to : mean=1/2, sigma= $1/\sqrt{(12N)}$

Lens mass ratio function $F(q) \propto q^p$ by V/V_m method

- q_{min} as a least requirement to confirm a planet
- Assuming the mean volume ratio about $q \rightarrow \langle r_i \rangle = 1/2$
- *p*~0.73 for *q* < 10⁻⁴

Reference

- Schmidt, M., 1968, *Apj*, 151, 393.
- Shvartzvald, et al., 2016, MNRAS, 457, 4089.
- Suzuki, D., et al. 2016 *Apj*, 833, 145.
- Udalski, A., et al. 2018, ACTA ASTRONOMICA, 68, 1.