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Introduction

(1) OGLE-2005-BLG-169
(2) OGLE-2005-BLG-390
(3) OGLE-2007-BLG-368
(4) MOA-2009-BLG-266
(5) OGLE-2013-BLG-0341
(6) OGLE-2016-BLG-1195
(7) OGLE-2017-BLG-0173
(8) OGLE-2017-BLG-1434

Microlensing events with

→ Detectability of               events?
→ Mass function of               lenses?

V/Vm method

Retrieved from OGLE web

q<10−4

q<10−4

q<10−4
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V/Vm method

● Kafka (1967)
● Schmidt (1968)
● Lynden-Bell (1971)

Integrated flux about
the distance from the source to detector (r)

Integrated flux about
the detectable distance limit (rm)

V
V m

Ratio for the distribution of “detectable” samples as a probability
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V/Vm method
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V/Vm method

Vm(rm)

V(r)
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V/Vm method

⟨V /V m⟩=
∫Lmin

Lmax
dLϕ(L)∫0

r m(L)
(V /V m)4 π r2

ρ0dr

∫Lmin

Lmax
dLϕ(L)∫0

rm( L)
4 π r 2

ρ0dr
L = Luminosity
ϕ(L) = Luminosity function
ρ0 = uniform density

Acceptable samples : r < rm 

⟨V /V m⟩→
1
2

σ ⟨V /V m⟩
→

1

√12N

For equally distributed samples :

N = size of samples
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V/Vm for microlensing

V
V m

=

ri=
∫qi

qmax
dlnq ' F(q ' )Pi(q ')

∫0

qmax
dlnq ' F(q ' )Pi(q ')

Udalski et al. (2018) :

q = Lens mass ratio
F(q) = Mass ratio function
P = Planet confirmation probability (q’≠qi)

ri→
∫qi

qmax
dlnq ' F (q ')

∫qmin, i

qmax
dlnq ' F (q ' )

For Pi(q) = 0 or 1
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V/Vm for microlensing

V
V m

=

Criteria for finding             :

●

●

● No alternate solutions with                     and

log q<−4

σ (log q )<0.15

Δ χ2<10 Δ log q>0.3

qmin

(1) OGLE-2005-BLG-169
(2) OGLE-2005-BLG-390
(3) OGLE-2007-BLG-368
(4) MOA-2009-BLG-266
(5) OGLE-2013-BLG-0341
(6) OGLE-2016-BLG-1195
(7) OGLE-2017-BLG-0173
(8) OGLE-2017-BLG-1434

Microlensing events with                   :log q<−4
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(1) OGLE-2005-BLG-169
32 A. A.

Fig. 13. Nine simulations of OGLE-2005-BLG-169, similar toFig. 4. It is based on re-reduced data
from all observatories, since these reductions would have been carried out whether or not a planet
was suspected.

ily because of concerns that the quite small amplitude of thedeviations might be
due to variable weather conditions, which were very severe during the night of the
anomaly. In the end, the decision to publish was based on the unambiguous dis-
continuous change of slope at HJD′ = 3491.97. Such discontinuities are a generic
feature of microlensing caustic crossings but would be extremely difficult to pro-
duce by weather-induced artifacts.

Using the same criteria (and relying on the judgment of A.G.,who made the
original decision to publish) we conclude that the simulation with log(q′/q) =−1.2
would marginally meet this condition. We fit simulated data at this value and find
that σ(logq) = 0.174, which does not satisfy our sample criterion. However, at
log(q′/q) = −1.0, we findσ(logq) = 0.10, and so adopt log(q′/q) = −1.0 as our
threshold.

q=6.1×10−5

→ 0.3 mag offset
     for OGLE alert
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(2) OGLE-2005-BLG-390

30 A. A.

OGLE-2005-BLG-390

OGLE-2005-BLG-390 was detected primarily in follow-up data organized by
the PLANET collaboration, but in contrast to all previous cases, all of these data
were taken in response to an alert of the microlensing event itself, not an anomaly
(Beaulieuet al. 2006). The anomalous behavior was noted by the observer at the
Danish telescope in Chile, and in principle this could have influenced other obser-
vatories farther to the west. PLANET conducted (but did not formally report) an
investigation of this question at the time and found that their internal alert did not
induce changes in the observing cadence at Canopus (in Tasmania), but did lead
to an increased cadence at Perth. However, from the actual record of observations,
the observational cadence at Perth did not in fact change from what it had been
on previous nights. While in principle it is possible that the internal alert caused a
previous decision to reduce the cadence to be exactly revsersed, there is no specific
report of such a coincidence. Hence, we believe a more likelyexplanation is that

Fig. 12. Nine simulations of OGLE-2005-BLG-390, similar toFig. 4. It is based on re-reduced data
from all observatories.

2L1S?  1L2S?

q=7.6×10−5
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(3) OGLE-2007-BLG-368
28 A. A.

Fig. 10. Nine simulations of OGLE-2007-BLG-368, similar toFig. 4. This figure is based on re-
reduced data from all observatories. It should be compared to the next one (Fig. 11), which is based
on “online” OGLE and MOA data.

Fig. 11 shows the same nine panels as Fig. 10 but with only online survey
data. Based on this figure, we consider it to be unlikely that there would have been
an alert on this event in time to trigger CTIO observations for log(q′/q) ≤ −0.4.
Moreover, we can say with near certainty (since A.G. made this decision) that CTIO
would not have responded to such an alert if it had been given.However, the CTIO
response is of secondary importance because the Danish data, which cover the same
time interval, would certainly have been taken.

As usual, we first ask at what threshold would the online survey data have
led to re-reductions, and then ask whether these reductionswould have led to a
publishable result given the data that would have been acquired.

The online OGLE data would, by themselves, certainly have triggered re-reduc-
tions at log(q′/q) ≥ −0.4. At log(q′/q) = −0.5 this is less probable, but in this
case the partial corroboration from online MOA data would have almost certainly
led to re-reductions. Re-reduction at log(q′/q) = −0.6 is also a possibility.

q=9.6×10−5

If no follow-ups …
→Δ χ2<10 ,Δ log q>0.3
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(4) MOA-2009-BLG-266

q=5.6×10−5

26 A. A.

focus on the event as it approached peak: they took four points spread over 1.4 hr on
the night before the alert. The others either took one point on occasional nights or
had stopped taking data altogether. Thus, it is reasonable to suppose that Canopus
would have also taken four points on the next night, even if there had been no
alert. However, these data would have overlapped MOA data and so would not
have qualitatively altered how well the event could have been characterized in the
absence of an alert (and so absence of data in the trough).

Fig. 9. Nine simulations of MOA-2009-BLG-266, similar to Fig. 4. The simulations are based on
re-reduced data from all observatories.

Fig. 9 shows nine panels with log(q′/q) =−0.1,−0.2, . . .−0.9 and all data re-
reduced. The first question is whether, with a smaller mass ratio, MOA would have
issued an alert (based, of course, on online data). While Fig. 9 shows re-reduced
data, it still enables us to understand how the basic form of the MOA light curve
evolves asq declines: over the range log(q′/q) ≤−0.6, it basically takes the form
of a mean excess over the point-lens model (dashed line). We now argue that an

→ 0.1 mag offset
     for MOA alert
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(5) OGLE-2013-BLG-0341

q=4.6×10−5

24 A. A.

Fig. 8. Nine simulations of OGLE-2013-BLG-0341, similar toFig. 4. Similar to those simulations, it
is based on “online” OGLE and MOA data in order to focus on the problem of real-time recognition
of the planetary anomaly.

low log(q′/q) =−0.75. We conclude that follow-up observations would have been
triggered in the two ranges(log(q′/q) > −0.1) and(−0.3 > log(q′/q) > −0.75) .

Nevertheless, we now argue that only in the former range would a paper claim-
ing secure detection of a planet have been written. First, incontrast to a dip in
the light curve (which can only be explained by a minor-imageanomaly), an iso-
lated bump in the light curve can also be explained by a 1L2S solution. The OGLE
anomaly data are confined to a narrow range in time, and so haveno leverage on
the shape of the bump to distinguish between 2L1S and 1L2S.

In principle, the follow-up data (which we argued above would have been trig-
gered for the second – “bump” – range ofq) could have confirmed the planetary
nature of the anomaly. However, there are two practical issues that severely under-
mine this possibility. First, at our finally adopted value oflog(q′/q) ≤ −0.1, we
find that this confirmation is already relatively weak,∆χ2 = 66, a point to which

Anomaly is clear, but ...
       2L1S?  1L2S?

Δ χ2⩽66
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(6) OGLE-2016-BLG-1195

q=4.8×10−5

Vol. 68 21

and therefore the MOA data would have been examined quite closely even if the
anomaly had not been detected in real time.

Following the above considerations, we examined fake lightcurves constructed
on the basis of MOA online data, both with and without the additional MOA points
triggered by the alert. We are confident that the anomaly would have triggered
re-reductions of MOA and KMTNet data for log(q′/q) = −0.3 and perhaps even
lower. However, we do not investigate the exact threshold, nor do we show the
plots that we reviewed because, as we now describe, the fundamental issue is not
simply recognizing that there was an anomaly.

Fig. 7. Nine simulations of OGLE-2016-BLG-1195, similar toFig. 4, except that in this case the data
points are based on the re-reduced data in order to focus on whether the event (once recognized as
interesting) would be publishable.

Fig. 7 shows 9 panels with log(q′/q)=−0.05,−0.10, . . .−0.45, with re-reduced
data from both MOA and KMTA. In each panel, we show both the planetary (2L1S)
and binary source (1L2S) models. The number in parentheses to the right of each
panel gives the∆χ2 ≡ χ2(1L2S)−χ2(2L1S) difference between these models. For

2L1S?  1L2S?
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(7) OGLE-2017-BLG-0173
q=2.5×10−5

Vol. 68 19

Fig. 6. Nine simulations of OGLE-2017-BLG-0173 (Cannae solution B), similar to Fig. 4. The values
in parentheses are∆χ2 = χ2(1L2S)−χ2(2L1S) , by which binary source models are excluded. To the
eye, the degeneracy between these solutions and those in Fig. 6 (von Schlieffen solution A) persists
at all q.

OGLE-2016-BLG-1195

OGLE-2016-BLG-1195 was analyzed by two groups (Bondet al.2017, Shvartz-
vald et al.2017) based on completely different data sets. The two groups obtained
slightly different mass-ratio estimatesq = 4.22±0.65×10−5 (Bondet al. 2017)
and q = 5.60±0.75×10−5 (Shvartzvaldet al. 2017). Here we adopt a weighted
averageq = 4.81±0.49×10−5 .

The anomaly in this event was discovered and publicly announced by the MOA
collaboration in real time,i.e., at UT 15:45 June 29, 2016. In fact, while the internal
discussions that led to this alert were still ongoing, the MOA observers increased
the cadence of observations, beginning at UT 15:15. That is,prior to this change,
MOA observed the field steadily at a cadence ofΓ = 4.0 hr−1 , which is their normal

q=6.5×10−5 18 A. A.

Fig. 5. Nine simulations of OGLE-2017-BLG-0173 (von Schlieffen solution A), similar to Fig. 4.
The values in parentheses are∆χ2 = χ2(1L2S)− χ2(2L1S) , by which binary source models are
excluded. To the eye, the degeneracy between these solutions and those in Fig. 6 (Cannae solution
B) persists at allq.

This exclusion has no practical importance from the perspective of the present
mass-ratio-function analysis, because the original eventis itself excluded. How-
ever, the persistence of this degeneracy is of significant interest. Hwanget al.
(2018) had noted that the other published Hollywood event, OGLE-2005-BLG-390
(Beaulieuet al.2006), did not suffer from this von Schlieffen/Cannae degeneracy.
And they further noted that the caustic was much smaller thanthe source in that
case, whereas the caustic was of comparable size to the source for OGLE-2017-
BLG-0173. They therefore conjectured that the degeneracy was a consequence of
the caustic size relative to the source size. However, the present analysis shows that
this is clearly not the case. Hence, there must be some other governing factor. This
may be the angle of the source trajectory,α , but investigation of this question is
well outside the scope of the present work.

For all                  
Between (A) and (B)

→Δ χ2<10 ,Δ log q>0.3log (q ' /q)

(A) (B)
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(8) OGLE-2017-BLG-1434
16 A. A.

Fig. 4. Nine simulations of OGLE-2017-BLG-1434 with exactly the same parameters as the best-fit
model (black curve) except that the mass ratioq is lower by ∆ logq as indicated in the right axis
labels. In each case, the simulated data points (various colors) deviate from the model (orange curve)
by exactly the same amount as the actual data points deviate from the best-fit model. Theleft panels
show the corresponding caustic geometries. These characteristics will be same for all eight events
in the figures that follow. The data points are based on the “online” OGLE data and “quick look”
KMTNet data in order to focus on the problem of determining whether the event would be recognized
as sufficiently interesting to trigger re-reductions.

flects the fact that the residuals, which concretely reflect the observational errors,
are preserved in the simulated data. It follows that the muchstronger signal at
log(q′/q) =−1.50 would also meet our criteria. We therefore adopt this threshold.

Before continuing, we note that more systematic proceduresare currently be-
ing applied to 2017 KMTNet data, by means of which it is very likely that at
log(q′/q) = −1.75, this planet would ultimately have been discovered. Thatis,
while the quick-look data were restricted to BLG41, all known microlensing events

q=5.8×10−5

→ Thanks KMTNet
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Power law of the mass function

F (q)=
dN
dlnq

∝q pwhere                                  ,  and assuming                                 ,

Vol. 68 33

6.2. Constraints of the Mass-Ratio Function F(q)

If F(q) is chosen correctly, then we expect the sevenr i defined by Eq.(10) to
be uniformly distributed on the interval [0,1]. As discussed in the separate analyses
of each event in Section 6.1 (and in particular, in subsection OGLE-2013-BLG-
0341), in all casesPi takes the formPi(q′) = Θ(10−4−q)Θ(q−qmin,i) , whereΘ
is a Heaviside step function andqmin,i has been evaluated separately for each event.
Hence Eq.(10) reduces to Eq.(11).

We expect then that

1
N

N

∑
i=1

r i =
1
2
± (12N)−1/2 −→ 0.500±0.109 (12)

where N = 7. We also expect that the distribution ofr i will be consistent with
uniform based on a Kolmogorov-Smirnov (KS) test. To take an extreme exam-
ple, if for a given trial functionF(q) , each of ther i were exactly equal to 0.58,
then Eq.(12) would be satisfied, but the distribution would not be consistent with
uniform (p < 1%) . Nevertheless, since KS is a relatively weak test, it would be
surprising if a function that satisfied Eq.(12) did not meet this second criterion as
well.

We begin by considering power lawsF(q) ∝ qp . Applying Eq.(12) we find that

p = 1.05+0.78
−0.68 (this work). (13)

ri
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Fig. 14. Cumulative distribution of the “V/Vmax” parameterr i defined by Eqs.(10) and (11) for
three power laws dN/dlnq ∝ qp , whereq is the mass ratio andp= 1.05 (green),p = 0.37 (black),
and p = 1.83 (red). These represent the best fit and 1σ lower and upper limits, respectively. In all
cases, a Kolmogorov-Smirnov test shows that these are consistent with being drawn from a uniform
distribution. Hence, there is no basis to reject a power-lawfor the mass-ratio function from this
analysis. The best fit value confirms a sharp turnover in the mass-ratio function relative to that found
by Sumiet al. (2010) and Suzukiet al. (2016) at higher mass ratios.

34 A. A.

Fig. 14 shows the cumulative distribution at the best fit and 1σ limits dis-
played in Eq.(13). These have maximal differences (relative to uniform) ofD =
(0.285,0.309,0.391) with corresponding KSp-valuesp= (0.53,0.43,0.18) . That
is, there is no independent information from the uniformity(or lack of it) that would
indicate that any of these functions is unacceptable at the 1σ level. Therefore, there
is also no basis for rejecting a power-law form for the distribution in the domain
probed by our sample.

Fig. 15 illustrates the “V/Vmax” method as well as the best fit result. For each
event (listed at the top), the observed mass ratioq is shown by a blue point, while
the lowestq′ at which it could have been detected is shown by the bottom of the
rectangular box. The boxes themselves have uniform width, which illustrates the
relative frequency ofq′ values for the hypothetical case dN/dlnq ∝ q0 = const,
i.e., p = 0. The red curves show the relative frequency for the best-fitcase,p =
1.05. The parameterr i is the ratio of the volume “V ” ( i.e., area) contained within
the red curve above the actual detection, divided by the total volume “Vmax” within
the red curve. The best-fit value (p = 1.05), illustrated in Fig. 15, occurs when
〈r i〉 = 0.5.

Event Sequence

lo
g(

q)

2 4 6
−6

−5.5

−5

−4.5

−4
OB130341 OB161195 MB09266 OB171434 OB05169 OB05390 OB07368

Fig. 15. Illustration of the “V/Vmax” method. The blue circles show the best fitq from the actual
event, while the bottoms of the black rectangles show the lowest q′ that could have been detected.
The red curves show the relative frequency of different massratios according to the best-fit power
law, dN/dlnq ∝ q1.05. These can be compared to the relative frequencies that would be expected
from a hypothetical law dN/dlnq = const (black). If the frequency function is chosen correctly,
then on average, half of the red “volume” should be above the blue points. More generally, the ratio
r i of this “volume” to the total “volume” should be consistent with being uniformly distributed over
the interval [0,1].

r i=
∫qi

qmax
dlnq' F (q ' )

∫qmin, i

qmax
dlnq ' F (q ' )

⟨ri⟩=
1
2
±

1

√12N

p=1.05−0.68
+0.78
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Final solution

reference

> -1.4
Shvartzvald et al. (2016)

-4.9 ~ -1.4

≥ -3.75
Suzuki et al. (2016)

< -3.75

< -4 Udalski et al. (2018) 

p=0.73−0.34
+0.42

for log10 q<−4

18

−0.93±0.13

0.6−0.4
+0.5

log10 q p

1.05−0.68
+0.75

−0.50±0.17

0.32±0.38



  

Summary

V/Vm method is a probability assumption 

● Integrating effective parameter distribution (V)
● Taking the volume ratio to the maximum potential (V/Vm)
● Ideal mean ratio reaches to : mean=1/2, sigma=1/√(12N)

Lens mass ratio function F(q) q∝ p by V/Vm method 
● qmin as a least requirement to confirm a planet
● Assuming the mean volume ratio about q → <ri>=1/2
● p~0.73 for q < 10-4

Reference
● Schmidt, M., 1968, Apj, 151, 393.
● Shvartzvald, et al., 2016, MNRAS, 457, 4089.
● Suzuki, D., et al. 2016 Apj, 833, 145.
● Udalski, A., et al. 2018, ACTA ASTRONOMICA, 68, 1.
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