
  

 Fitting a model to data
(part 1)

based on
David W. Hogg, Jo Bovy, Dustin Lang (2010)

https://arxiv.org/abs/1008.4686

Jan Skowron, SJC, OA UW, 06.12.2022



  

Least-square fitting
● good only if:

– negligible uncertainties in one direction (eg. x)
– Gaussian uncertainties in another direction (eg. y)

● rarely meet in practice

● goal: framework to consider outliers, arbitrarily 
covariant 2d uncertainties, various uncertainties 
distributions, etc.



  

Generative model

● fitting is non-arbitrary
● and model permits direct computation of the 

likelihoods and posterior distribution
– this allows for subsequent marginalization (of 

posterior) over unimportant parameters



  

Straight line fits
● truly linear relations are rare in physics
● any transformation of coordinates often moves linear 

relation away from linearity
● even if looks linear – in the absence of theoretical 

reason for it – probably isn't

● fitting a straight line will introduce systematic errors, 
and can introduce overconfidence in the predicted 
values elsewhere



  

Simple straight-line fits are often 
useless

● providing solely a slope and intercept of the 
best-fit model rarely can be used by other 
researchers

● not for prediction of new data
● not for simulations



  

Weighted linear least-square fitting:

● set of points (xi, yi) 
● together with Gaussian uncertainties in y 

direction σyi 
● perfect knowledge in x direction
● and a model:



  

Matrices

– vector

– functions in linear model
  f(x) = b f0(x) + m f1(x) + ...

– covariance matrix (could be 
non-diagonal, if there are 
covariances among 
uncertainties of different points)



  

If not-over-constrained
(set of linear equations)

Y = A X
● where 

● Y – vector (of values)
● X – parameters of model
● A – model

● solution: Y = A X

A-1 Y = A-1 A X  - multiply by A-1

A-1 Y = X
X = A-1 Y



  

“Best-fit values”
● given by X:

if not-overconstained:

Y = A X

A-1 Y = A-1 A X
A-1 Y = X
X = A-1 Y

if over-constrained:

1) weight points with inverse 
covariance matrix:
C-1 Y = C-1 A X

2) reduce dimensionality by 
multiplying with AT:
AT C-1 Y = AT C-1 A  X
(AT C-1) Y = (AT C-1 A)  X
Y' = A' X

{



  

This minimizes χ2

● total squared error scaled by uncertainties:

● if uncertainties are Gaussian and correctly 
scaled, the matrix:

● is the covariance matrix for parameters in X



  

Exercises

● Exercise 1 – fit line to last 16 data points from 
the file data.txt (ignore uncertainties other than 
σy).

● Exercise 2 – fit line to all 20 data points
● Exercise 3 – extend model to fit parabola (to 

original points - last 16 points)



  

#  1    2      3      4        5        6
# No    x      y   sigma_y  sigma_x  rho_xy
   1   201    592    61        9     -0.84
   2   244    401    25        4      0.31
   3    47    583    38       11      0.64
   4   287    402    15        7     -0.27
   5   203    495    21        5     -0.33
   6    58    173    15        9      0.67
   7   210    479    27        4     -0.02
   8   202    504    14        4     -0.05
   9   198    510    30       11     -0.84
  10   158    416    16        7     -0.69
  11   165    393    14        5      0.30
  12   201    442    25        5     -0.46
  13   157    317    52        5     -0.03
  14   131    311    16        6      0.50
  15   166    400    34        6      0.73
  16   160    337    31        5     -0.52
  17   186    423    42        9      0.90
  18   125    334    26        8      0.40
  19   218    533    16        6     -0.78
  20   146    344    22        5     -0.56
# where the full uncertainty covariance matrix for each data point is given by:
#
#  |                                                 |
#  |       sigma_x^2          rho_xy*sigma_x*sigma_y |
#  |                                                 |
#  | rho_xy*sigma_x*sigma_y          sigma_y^2       |

data.txt



  

Ex 1

What is the standard uncertainty variance σm on the slope of the line?



  

Ex 2

What is the standard uncertainty variance σm on the slope of the line? Is there 
anything you don't like about the result? Is there anything different about the new 
points you have included beyond those used in Exercise 1?



  

Ex 3



  

Better way - Objective function

● all knowledge about the problem in one function
– justified
– scalar
– monotonically represents the “quality of fit”

● and subsequently, procedures: 
– to find optimum
– and to find posterior around optimum



  

Generative model for the data

– parametrized
– quantitative 

● description of a statistical procedure that could 
reasonably have generated the data



  

Simple example
● data really do come from perfect model, this 

exact line:

● only reason the data deviate from this narrow 
line is that the small offset was added

● this offset was drawn from a Gaussian 
distribution (with mean = 0, and known variance 
σy

2)



  

Simple example
● in this model, the probability of measuring given 

data point yi at given position xi is simply:

● in this case, the likelihood of observing the 
dataset we have observed is given by:



  

Simple example
● finding a line, is to find parameters (m, b) that 

maximize this likelihood

● We can simplify this: 

A justification! Minimizing χ2, in fact, maximizes likelihood



  

Bayes theorem
● of course mind the prior, if important in the studied range of 

parameters:

likelihood prior

evidenceposterior

I - all information we have (like xi, σi, etc.)

{yi} – all data we have

m, b – parameters of the model

p(m,b|I) – prior probability distribution of parameters without knowing data



  

Exercises

● Exercise 4 – calculate mean
● Exercise 5 – derivative of χ2 in matrix form
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