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Reminder: Generative model
in a simple linear fit

● in this model, the probability of measuring given 
data point yi at given position xi is simply:

● in this case, the likelihood of observing the 
dataset we have observed is given by:



  

Reminder: Likelihood of the 
observed data

● finding a line, is to find parameters (m, b) that 
maximize this likelihood

● We can simplify this: 

A justification! Minimizing χ2, in fact, maximizes likelihood



  

Outliers
● points deviate from the linear relation because 

of:
– unmodeled experimental uncertainty
– not-included rare sources of noise
– or model doesn't apply to the data



  

● approaches:
1) objectively reject outliers (or become insensitive to bad 

points)
2) model the data-point uncertainties in order to permit 

larger deviations

●  both better than manual rejection, for reasons of:
1) objectivity
2) reproducibility

eg. “sigma clipping” is not the best, as it is a procedure but not a result of justifiable modeling 

Outliers



  

Outliers – parameters to descibe
● adding boolean vector, if a given point was good or bad

– value 1 if point is good
– value 0 if point is bad

a vector {qi}i=1
N of ones and zeros (N additional parameters!)

● adding a parameter: prior probability Pbad (chance) of how 
often an outlier appear in the observed data

● and for example: parameters describing the distribution of 
outliers, with (mean, variance) = (Ybad, Vbad)

All this N+3 new parameters are used, in order to create a 
“generative model” for all data points observed in the 
sample



  

Parameters of outliers

● these additional parameters: {qi}i=1
N, Pbad, Ybad 

and Vbad do not have to be know in advance
● in principal, one can fit for those
● and then, if not interested, we can marginalize 

out these from the posterior distribution of 
important parameters



  

Likelihood

● probability of good point (Gaussian around the model)

L    =    p(   data   |          parameters        )

● probability of bad point (Gaussian with sigma Vb and around some typical  
value Yb)



  

● Multiply probability for each point
● good (fg – foreground)
● bad (bg – background)



  

We have to penalize data rejection

We add prior on qi:

total prior prior on qi     x     rest of the prior

where:

A binomial probability of a given sequence of good and bad points
assuming given outlier probability Pb. 

[ Assumption: single probability for all points – but could be modified to weight / 
diferenciate probability of points being outliers ] 



  

Marginalization...

● denote all parameter as:

● posterior (Bayes):

● marginalization of posterior:

parameters of the line nuisance parameters                posterior  



  

● sum over all 2N possible settings of the {qi}i=1
N

● this takes a long time!
● However, in this simple model, it can be done 

analytically:
● lets imagine that after marginalization, each ith point is 

drawn from a “mixture” of a straight-line and outlier 
population (with [1-Pb] and [Pb] probabilit



  

● instead of:

● we have:



  

● instead of:

● we have:



  

Exercises

● Exercise 6 – fit model with outliers
● Exercise 7 – divide errorbars by 2 and fit again, 

see posterior for Pb 
● Exercise 9 – compare parameters and their 

uncertainties between the fits with standard and 
shrunk errorbars 
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Exercise 7
(divide errorbars by 2 and fit again, see posterior for Pb )

probability of outliers

datapoint errorbars divided by 2unchanged errorbars



  

Exercise 9
compare parameters and their uncertainties between 

the fits with standard and shrunk errorbars 

parameters of linear model

datapoint errorbars divided by 2unchanged errorbars



  

Also, the uncertainties can be fitted 
for!

● Exercise 12: assume that the uncertainties of 
the datapoints are not known

● let S be a new fit parameter, that gives the 
variance of the datapoints uncertainty

● we fit slope, intersection and variance



  

Exercise 12
● it is done with the same likelihood as in previous 

exercises 
● (but do not forget the 1/√(2πσ2) term!)

logl(params: A, B, S, data: X, Y) =
 

     -0.5 * log(2πS) * N - sum( ( ( Y – line(A,B)(X) ))**2) / (2 * S)

● where S is a variance of points (σy
2 = S)

● X and Y are coordinates of the datapoints
● A and B are slope and intersection of the linear model
● N is the count of the datapoints (eg. len(X))

square root

sigma2

1 / (2σ2)

prediction of the linear model at 
each  position X

observed value



  

Exercise 12
errorbars are fitted here



  

Non-Gaussian uncertainties
● easiest way to approach this is to simulate non-

Gaussian errorbars with a sum of Gaussian 
distributions

● lets make a Gaussian mixture model:

where:

(similar to [1-P] and P)

some offset
(typically 0)

different variances of 
components



  

Arbitrary 2d uncertainties

● Each datapoint has full 2d covariance matrix for 
errorbars:

xi    yi     sigmax,i    sigmay,i    covxy,i

+



  

Probability of observing a point

where:

at (xi, yi) when true value is (x, y):



  

We can project onto the line

projected distance from the line:

line angle:

projected/orthogonal variance:

typical Gaussian likelihood:



  

Exercise 13
fit model to points with 2d errorbars)

(no outliers in the data)



  

extend model to simultaneously fit population of 
outliers

Exercise 14

standard linear model
(outliers in the data)

mixture model with outliers 
accounted for (Pb = 19%)



  

Intrinsic scatter of the linear 
model

● what if we know, that the underlying model have 
some inherent scatter to it?

● we can model it by adding new parameters to 
describe this

● simplest case: we add variance (V)

compared to previous:



  

Exercise 17 and 18
(add an intrinsic scatter to the linear model)

without scatter fitted with intrinsic scatter as a fit 
parameter



  

Exercise 18

without scatter fitted with scatter
(larger uncertainties of 

parameters)



  

Exercise 18
(generate maginalized posterior for the 

intrinsic scatter)



  

Fin
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