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Noise Iin transit event

e Wwhite noise:
instrumental,

depend on photon counts

e correlated noise:
astrophysical, e.g. stellar activity

wavelength dependent
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Gaussian Process

ordered collection of random variable along one or more axes

for exoplanets transits : random variables model a series of observations of the star’s flux taken at
discrete time

relation between random variables, we model N’ observations with N’-dimensional Gaussian distribution.

characterized by :

e covariance matrix define by kernel function k(x;, x;)

Ki.j = k(x;, xj) + 6i.j<7,2s (1) .0; - White noise component

e mean function ©(t)

deterministic component, transits model



GP likelihood function

1
Inf = —5()’ . I"')TK_I(.V )
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Y. - observations
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Multiwavelength Noise Model

model of noise correlated across both time and wavelength

e Time-correlated Variability Model

e \Wavelength Dependence of Variability



Time-correlated Variability Model

Anderson & Jefferies (1990)

stellar oscillations from stochastic excitations damped by convection and
turbulent excitation in the star

 #* d
=) —y() + y() = (@) (3)
Wy dt- wo dt
Wo - characteristic frequency of the oscillations
0 - quality factor of the oscillator
y(t) - amplitude of the oscillations

e(t) - stochastic driving force



Time-correlated Variability Model

if € (t)Gaussian distributed solution is GP with power spectrum :

—

4
S(w) = % S0Wo

T (W — wp)? + wiw?/Q?

(4)

setting Q = 1/42.
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giving kernel function:
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Figure 1. Left: power spectrum of the simple harmonic oscillator kernel for several values of the quality factor Q. For Q < 1/+/2 the system is overdamped. For
Q > 1/4/2 the system is underdamped and the Gaussian process (GP) shows oscillations at the characteristic frequency. For our simulations we set @ = 1/+/2, in
which case the system is critically damped. Right: noise realizations for each power spectrum on the left. Note the decreasing coherency of the oscillations as we move
from high to low values of Q. The decreasing noise amplitudes from top to bottom are a result of the fact that the GPs with larger Q values have more total power at
constant Sy,.



Wavelength Dependence of Variability

Stellar correlated variability model:

e two-component host's photosphere
e “hot” and “cold” spectral Sh(A) and S.(}\)
e converting fractions x, and x; = 1 — xy

R?_
T @S + xnSi ) Ra (NN

Rp(N) - response curve for the filter

Fp, =

(7)
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cov(Fp, Fp,) = ogzcov(xca'l, XcQ)
= s corr(xe, Xc). (13)

(8)
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T;j = corr(xc(f;), xc()))

X, > X ()

C
drawn from one-dimensional GP at times t fori=1,..., N
(3 + TR TiaR ... inR ]
2
O-'.l 0 2 Y
X = X 2 T;j = corr(xc(t;), xc(t})) R = 5 al?z :
0 iz o a5

white noise time covariance bands covariance



For M bands B, ,B,,...,B,, with amplitudes a;, a; ,...ay

.
% 12 a1 Xpm
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Validation of multiwavelength stellar variability

s SOHO observations s GP sample
- . band A
1.01 1.0] MRS A . o] i
X X
=] >
G 05 = 05
1.5 1.5
8 8 . band B
N gl N | s ki ia e i
© ©
§ 0.5 é 0.5
O 15 O 15
= c
1.0 1.0 ‘%ﬂﬁy“&mr ;:ﬁﬁ},’,# %a,;
0.5 A " . . - — x . . 0.5 . . . . . . .
45.8 46.0 46.2 46.4 46.6 46.8 47.0 47.2 45.8 46.0 46.2 46.4 46.6 46.8 47.0 47.2
days since Jan. 23, 1996 days since Jan. 23, 1996

Figure 2. Left: SOHO three-channel Sun photometer time series of the Sun. Right: a three-band light curve simulated from a GP with a kernel consisting of three
Kronecker-product terms (see Equation (59)), each term having the covariance described by Equation (17). The GP hyperparameters were obtained by optimizing the
GP likelihood with respect to the data in the left panel.
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Transit model

Figure 3. Schematic of the trapezoidal transit model. The center of transit #, is
the midpoint of the transit.

/‘l‘trap (t, 0)

0 = (Rp’ 1o, 69 6in)
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Simulations

blue band
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Figure 4. Two bands from a multiband simulation combined to simulate a
monochromatic light curve with the same noise realization. Note that the white
noise amplitude is smaller in the monochromatic light curve than for either
individual band, while the amplitude of the correlated noise is the photon-
weighted mean of the amplitude in the two bands. Here the blue band has a
correlated noise amplitude twice that of the red band.
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Three regimes
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Figure 6. Power spectral densities for the three regimes. The shaded region
spans from the inverse transit duration on the left to the inverse ingress/egress 00 25 50 75 10.0 125 15.0 175 20000 25 50 7.5 10.0 125 15.0 17.5 20.0
duration on the right. Note that the densities plotted here are only meant to be .
illustrative, and do not correspond to the power spectra of the light curves in time (dayS)
Figure 5.

Figure 5. Representative light curves for the three noise regimes. The left panels show the two bands separately and the right panels show the monochromatic light
curve resulting from the summation of the two bands. Top: in regime I the variability timescale is much longer than the transit duration. Middle: in regime II the
variability timescale is between the transit duration and ingress/egress duration. Bottom: in regime II the variability timescale is shorter than the ingress/egress
duration. Figure 6 shows power spectra corresponding to each of these regimes (but not to the light curves pictured here).

1. regime I: 1/f, > ¢ fo = wo/(2m) a% + 0% =const
2. regime IL: 0y, < 1/fy < 6
3. regime III: 1/f; < &y oy = 20y

16



Information matrix

model made up of mean functions [lg with Ny parameters 91, 92 — QNﬁ

du ) d
[Zolij = (ﬁ) K-! (ﬁ)
i J

[Ig‘],-,j ~ cov(0;, 0)).

(21)
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Analytical Estimates for Parameter Uncertainties -Rp

e limb-darkening - ignored

1 6in ~ 0

e no other ungertainty _ . . Obrap B Sileich — Rt
e out-of-transit flux measured with high precision ->  —555~ = {_1 Rl

P

(23)
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Figure 7. Analytic approximation for the fractional uncertainty on depth for
two bands vs. the ratio of the correlated noise to white noise in first band, o /o,
in the limit of a constant amplitude of the sum of correlated and white noise (so
that the white noise declines as the correlated noise increases). The ratio of the
correlated noise in the two bands is two, i.e., ap = 2¢q. Plotted are the single-
band case (blue dashed), two-band case (orange solid), and the white noise in
each band, o, times 1/ J2 and 5 (dotted). The fractional precision is
normalized to the case a; = 0.
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M - bands generalization =
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Information uncertainty in the absence of correlated noise.
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1D celerite

GP for N flux measurements y = (3, ¥, »--Yy) taken attimes:it= 1, t,...tx)

|
nf = —E(y — 'Ky — p)

= %m det(K) — %ln(%) 1)

= (u(ty), p(t2),... u(ty))

computing covariance matrix K requires O(N?) operations

*celerity <- celeritas latin - quickness

22



celerite kernel, stationary GP  «w.x) = kas - x.

J
2 1 e
kﬁ(fn’ tm) = U;}(Smn . Z 5[((0' + lbj)e (¢j+id}) Tum
j=1
+ (aj — ib;)elci=4)Ten]
,8 = (al ess Qf 5 bl b_/, Cl «e+ CJ o dl dj)

2 . . . . . .
0, variance of Gaussian - distributed white noise

Tnm — ltn — f,,,l n,mec | —— N

(33)
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Dimensional ACF

Dimensional ACF

Figure 9. Approximation to various commonly used GP kernels. (a) Simple kernels with an exact celerite representation: cosine, or exponential times cosine. (b)

(a). Simple, exact kernels
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Approximation of (a) referred to as “exponential-squared” to distinguish it from sine-squared kernels, indicated in (c). (d) Matern kernels.




..for such kernel covariance matrix is a symmetric and semiseparable

K =A + tril(UVT) + triu(VUT),

ljyl.zj_] — (lje_‘)fn COS(djT”) F= bje_cjt" Sln(djtn),
i = aje~5 sin(djt,) — bje 9" cos(d;t;),
vm.Zj—l = eSi'm COS(de,,,),

Vm.?_j =g Sin(dj’m)a

J
2
An.n =0, + § ai.
j=1

(34)

(35)

U and V, both of size (N x P)

o0 0 o
® e © o
® & ©

O ® @
@

Upper Triangular
Matrix

P=2

®
°® 0
oo ®

o 090 O

Lower Triangular
Matrix
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Cholesky factorization O(NJ?)

K —.EBL!

L is the lower-triangular Cholesky factor and D is a diagonal matrix

ansatzz L =1+ tril(UWT).

Siit =Ssript Do v Wi Wa it SJ is a matrix of zeros and P is both the rank of
p P the semlseparable covariance matrix and the
Dy — Apn — Z Z Uy iSnjkUn number of columns in U and V, here equal to 2J.
==l

1

W': ! Un.iS
1,J D,,.,,'» 1j Z n.k ruk"
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but exp in (35) can be numerically unstable -> additional matrix ¢ with same dimension as U and V

Up2j—1 = ajcos(djt,) + b;sin(d;t,)
U2 = a;jsin(d;t,) — bjcos(d;ty)
Vi = cos(djtm)

Vm.2j — Sin(djtm)-

' — — p—Cilthy—1ty—1)
D G Pplgji— € TR

Sn.j.k = @ '(bn,k [Sn—l.j.k 7+ Dn—l.n—le—l.jw:—].k]

“n.j
2 P
Dn.n — An.n — Z Z n.an.j.kUn.k
j=1k=1
. i LA
W,_j — D an = ZUn.kSn.j,k
n.n k=1
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TWO-dimenSional GP e first large dimension (of size N )

e second small dimension (of size M)

Cholesky decomposition in case when covariance of second dimension can be written as the outer
product of a vector with itself:

R = ad!,

possible when the correlated noise has the same shape along large dimension and
varies proportionally in amplitude along the second small dimension
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Covariance matrix

K=2X+T@R,

e

white noise
diagonal
matrix

|

covariance matrix
for first dimension
define by celerite
kernel R = adl,

covariance matrix in
second dimension
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K=% +[Ag + tril(UVT) + triuv(VUT)] @ R
= 3 + diag(Ap ® R)
+ tril(UVT @ R) + triu(VUT ® R),

K =% + diag(Ap @ R)
+ tril(UVT @ aal)
+ trin(VUT @ aad).

K =% + diag(Ap ® R)
+ tril((U ® a)(V ® a)Y) structure as in 1D
case
+ triu((V ® a)(U ®@ a)b).

(48)

(AB) @ (CD) = (A® C)(B® D),

A' =% + diag(Ao ® R)
U=UQR
Vi=VR® o
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o :
Upt(n—1)+p2j—1 = @pla; cos(djty) + b; sin(d;ty))
~_/ -
UM(n—l)+p.2j — ap(aj Sln(djtn) - bj COS(de,,))
~/
VM(m—I)+p.2j—l = Qp Cos(djtm)

oy .
VM(m—l)+p.2j = Qp Sln(djtm),

= ¢ 1/ L/ I T/
" _ Jeita—tn-) p =] Snjk = P jPpi Ln—1jk + Dnotn—tWa1jWa—14]
“Mn—1)+p,: 1 s l’ P p , ’
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Figure 10. Left: posteriors for three transit parameters estimated by MCMC analysis on the two-band (colored) and single-band (gray) data. Posteriors are smoothed
using Gaussian kernel density estimation for wyd = 100 (corresponding to the final panel of Figure 11). From left to right: the center of transit 7o, transit duration 6,
and radius ratio R, /Ry. For a/o = 20 and a /o = 143 the posterior distributions for the two-band case are too sharply peaked to be visible. Right: representative light 33
curves for each value of the noise amplitude ratio a/o zoomed in on the transit signal (the input light curves have a duration of 10 days).
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Figure 11. Information uncertainty curves overlaid with MCMC uncertainty
estimates for trapezoidal transit parameters. Dashed lines show results for the
monochromatic noise model and solid lines show results for the two-band noise
model. Circles represent the MCMC uncertainty for distinct realizations of the
noise and transit.
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Figure 12. Information uncertainty curves (colored lines) for the two-band model compared to the white noise-only versions of the corresponding monochromatic
noise model (black lines) in regime [II. For the white noise-only models we set the correlated noise amplitude to zero and leave all other parameters the same as the
monochromatic model. As we transition from the white noise-dominated to the correlated noise-dominated regimes the Information uncertainty curves for the two-
band model transition from following the white noise model with o/ = & to the white noise model with ¢/ = (10 a. In effect perfect knowledge of the two-band
correlated noise hyperparameters allows us to recover transit parameters at the same precision as if the correlated noise were simply white noise with a 10 larger
amplitude.
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Figure 13. MCMC uncertainties (dots) and Information matrix uncertainties (lines) for monochromatic and two-band noise models as a function of the transit signal-
to-noise ratio (S/N) with c; = 2ay for the two-band simulations. For these simulations the correlated noise is held constant at 150 times the amplitude of the white
noise component and the total noise. defined to be the sum in quadrature of the white noise and correlated noise amplitudes. is conserved. The variability timescale
1/wy = 8/10, placing these simulations in regime II. For the monochromatic model. the Information and MCMC uncertainties correspond down to an S/N of about
10, which is the point at which the MCMC simulations no longer converge to the correct transit solution, as evidenced by the scatter in MCMC uncertainties at lower
S/N. For the two-band simulations the Information and MCMC uncertainties correspond down to an S/N of 1/100.
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Figure 14. MCMC uncertainties (dots) and Information uncertainties (lines) for monochromatic and two-band noise models as a function of the transit S/N with
wavelength dependence specified a; = 2a, for the two-band simulations. For these simulations the correlated noise is held constant at 10 times the amplitude of the
white noise component and the total noise, defined to be the sum in quadrature of the white noise and correlated noise amplitudes, is conserved. The variability
timescale 1/w = 6/10, placing these simulations in regime II. The larger white noise component compared to Figure 13 pushes the S/N limit below which the
MCMC and Information uncertainties diverge to higher S/N. As before, there is an abrupt transition at this limiting S/N where the MCMC suddenly fails to converge
to the correct transit solution.
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Limitations

only short scale variability (stationary kernel)

GP is bad with outliers (pre-processing)

noise have be stationary, no stellar flares, outbursts...

when time delay betten bands

small-amplitude temperature variation, behaving as area variations
every time of observation contains data in every band
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