What neutron stars tell about the hadron–quark phase transition: a Bayesian study

> Based on Tekatsy et al. 2023 (https://arxiv.org/abs/2303.00013)

#### Problem: dense matter EoS



#### Phase transition to quark matter



**Figure 1.** Illustrative QCD phase diagram. The *x*-, *y*-, and *z*-axis represent density, temperature and isospin asymmetry density  $n_n - n_p$ . The regime of late post-bounce phase of core-collapse supernovae and of neutron-star mergers are indicated by the orange band and grey shade.

Jakobus et al. (2022)

## **EoS** parameters

- Hadronic EoS: fixed to SFHo or DD2
- 2 parameters for phase transition
- 2 parameters for quark model

# Priors / minimal constraints

- pQCD calculations
- There is always a hadronic part (low density)

# Mass constraints (pulsars) $p(M_{\max}|\vartheta) \propto \prod_{i=1,2} \frac{1}{2} \left[ 1 + \operatorname{erf} \left( \frac{M_{\max}(\vartheta) - M_i}{\sqrt{2}\sigma_i} \right) \right]$

$$\times \frac{1}{2} \left[ 1 - \operatorname{erf} \left( \frac{M_{\max}(\boldsymbol{\vartheta}) - M_U}{\sqrt{2}\sigma_U} \right) \right]$$

#### Mass constraints



 $M_1 = 2.01 \pm 0.04$  $M_2 = 1.908 \pm 0.016$  $M_U = 2.16 \pm 0.17$ 

```
M_{PSRJ\,0740+6620} = 2.08 \pm 0.07
```

## **R-M measurements (NICER)**



PSR J0030+0451 PSR J0740+6620

#### **NICER** measurements

$$p(\text{NICER}|\boldsymbol{\vartheta}) \propto \int dM dR \, p_{\text{N}}(M, R) \delta(R - R(M, \boldsymbol{\vartheta}))$$
$$= \int dM \, p_{\text{N}}(M, R = R(M, \boldsymbol{\vartheta})) \,. \tag{17}$$

# Tidal deformability of GW170817



FIG. 12. PDFs for the tidal parameter  $\tilde{\Lambda}$  and mass ratio q using the PhenomPNRT model for the high-spin (blue) and low-spin (orange) priors. Unlike Fig. 11, the posterior is not reweighted by the prior, so the support that is seen at  $\tilde{\Lambda} = 0$  is due to smoothing from the kernel density estimator (KDE) that approximates the distribution from the discrete samples. The 50% (dashed lines) and 90% (solid lines) credible regions are shown for the joint posterior. The 90% credible interval for  $\tilde{\Lambda}$  is shown by vertical lines, and the 90% lower limit for q is shown by horizontal lines.

LIGO Collaboration and Virgo Collaboration (2019)

## Tidal deformability of GW170817

$$p(\tilde{\Lambda}|\boldsymbol{\vartheta}) \propto \int_{M_{eq}}^{M_{max}} \mathrm{d}M_1 \, p_{\mathrm{GW}}(\tilde{\Lambda}(M_1, \mathcal{M}, \boldsymbol{\vartheta}), q(M_1, \mathcal{M})) \,,$$
(19)

# Additional constraints

- GW170817: was it a black hole? Hypermassive NS hypothesis.
  - GW190814: Mass gap object?
    - HESS measurements

# Putting it all together

- Consistency with pQCD + lower mass limit
  - NICER measurements
    - Tidal deformability
    - Additional scenarios

 $p(\text{data}|\boldsymbol{\vartheta}) = p(M_{\text{max}}|\boldsymbol{\vartheta}) p(\text{NICER}|\boldsymbol{\vartheta}) p(\tilde{\Lambda}|\boldsymbol{\vartheta})$ 



• gv-Mmax relation is almost linear

#### **Results of Bayesian analysis**









FIG. 4. Same as in Fig. 2 but with the upper mass constraint from the hypermassive NS hypothesis also applied, in addition to the NICER and GW170817 measurements.

FIG. 5. Same as in Fig. 4 but instead of taking into account the upper mass bound based on the hypermassive NS hypothesis we only include the constraint from the BH hypothesis, while identifying the mass-gap object in GW190814 as a NS.

FIG. 8. Same as in Fig. 2 but with the constraint from the central compact object inside HESS J1731-347 also applied, in addition to the NICER and tidal deformability measurements, and the BH hypothesis.

#### Properties of quark cores



FIG. 3. Masses of quark cores for hybrid stars that develop such a core. The inset shows the radial dependence of the baryon density inside one of the hybrid stars that have a sizeable quark core. The vertical dashed line represents the boundary between the quark core and the outer layers.

#### Phase transition properties



## Summary



TABLE I. Median values of radii for 1.4  $M_{\odot}$  and 2  $M_{\odot}$  NSs for the different astrophysical constraints investigated in this paper. The errors represent the 90% credible intervals. All values correspond to NSs with hadronic EoSs given by the SFHo model.

| Measurement                                        | $R_{1.4}$ [km]                 | $R_{2.0}$ [km]                   |
|----------------------------------------------------|--------------------------------|----------------------------------|
| Prior (pQCD + $2M_{\odot}$ )                       | $12.93^{+0.88}_{-0.81}$        | $13.12^{+1.24}_{-1.23}$          |
| NICER                                              | $12.97\substack{+0.78\\-0.74}$ | $13.18^{+1.10}_{-1.07}$          |
| NICER + $\tilde{\Lambda}$                          | $12.63^{+0.61}_{-0.48}$        | $12.76\substack{+0.84 \\ -0.78}$ |
| NICER + $\tilde{\Lambda}$ + $M_U$                  | $12.52^{+0.56}_{-0.46}$        | $12.41\substack{+0.79 \\ -0.64}$ |
| NICER + $\tilde{\Lambda}_{\rm BH}$ + $M_{\rm gap}$ | $12.79^{+0.50}_{-0.50}$        | $13.01\substack{+0.55 \\ -0.53}$ |
| NICER + $\tilde{\Lambda}_{BH}$ + HESS              | $12.43_{-0.38}^{+0.55}$        | $12.44_{-0.63}^{+0.67}$          |

# Conclusions

• Astrophysical constraints can constrain the hadron-quark transition