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Interferometry - Young’s experiment



Interferometry



Interferometer output



We use two independent correlators (beam combiners) and define the
Complex Visibility -> V(u,v)

real and imaginary parts -> information about the amplitude and phase

u,v - E-W and N-S spatial frequencies [wavelengths]













We have the Complex Visibility V(u,v) - how do we obtain the image?

From the Citter-Zernike theorem: V(u,v) is a 2D Fourier transform of the
image:

T(l,m)=F−1[V(u,v)] - the sky brightness distribution

where l and m are E-W and N-S angles in the tangent plane [radians]



We have the Complex Visibility V(u,v) - how do we obtain the image?

From the Citter-Zernike theorem: V(u,v) is a 2D Fourier transform of the
image:

T(l,m)=F−1[V(u,v)] - the sky brightness distribution

where l and m are E-W and N-S angles in the tangent plane [radians]



Source: Meredith MacGregor



Source: Meredith MacGregor



Source: Meredith MacGregor



Source: Meredith MacGregor



Source: Meredith MacGregor



Source: Meredith MacGregor



Source: Meredith MacGregor



Source: Meredith MacGregor



Source: Meredith MacGregor





GRAVITY - testing general relativity by measuring the orbits of stars
passing near the central BH

They successfully tested the gravitational redshift and the Schwarzschild
precession using the orbit of S2

They need a closer periastron passing than previously measured to test for
secondary effects of GR

Problem -> The expected number of stars suitable for such a
measurement has been estimated around unity from extrapolation of the
density profile and mass function observed at the GC

Solution -> search for fainter stars
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VLTI GRAVITY observations
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Model fitting is a powerful method to extract the desired information, but
we do not know where the stars may be present

Common solution: the CLEAN algorithm



CLEAN views the image as a collection of point sources, whose signal it
subtracts iteratively from the measured coherent flux until only the noise
is left.

This is possible thanks to the fact that F(I1+I2)=F(I1)+F(I2)

Problem: CLEAN depends on the linearity and invertibility of the Fourier
transform - this is not true for the GRAVITY observations due to the
instrumental effects
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Solution: Bayesian forward modeling -> non-linear and non-invertible
terms can be handled straightforwardly

Popular methods used for modeling:
- descent minimization, but its limited to convex likelihood and prior
formulations
- MCMC, but its inefficient for high-dimensional problems

+ Sgr A is very variable

= new code -> GRAVITY-RESOLVE (GR)
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Prior model for the Galactic Center

The position of Sgr A follows a Gaussian distribution with user
defined mean and variance

The brightness of Sgr A is independent for each pointing and two
polarizations
2562 pixels - limit imposed by the angular resolution
All pixels in the image are statistically independent
Vast majority of pixels will be dark.
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Image priors

i - pixels in the image
Γ - Gamma function
q and α - user defined variables, set to reflect the fact that max(I)=1 and
the image may contain 1 star to the order of magnitude



Gamma prior is conjugate to Poisson likelihood



Prior model for the Galactic Center

Some known stars separately added by adding a prior on their
expected positions -> helps convergence

Spectral distribution of Sgr A is approximated with two powerlaws
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Response function

Fiber damping
Optical aberrations
Bandwidth smearing





Self calibration

Fixes time-variable instrumental effects (e.g. atmospheric conditions)

Self calibration by using closure phases formed over a triangle of
telescopes

Thanks to this we can estimate errors



Number of dimensions



A high number of dimensions -> very expensive calculation of posterior

Solution: Metric Gaussian Variational Inference



Covariance measured using the Fisher information metric

Fisher information metric = a covariance of gradient of the probability
function as function of random variables
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Multivariate Gaussian distribution

ξ - standardized coordinates for each degree of freedom - prior is given by
a unit Gaussian with zero mean
Ξ - covariance - first estimated using the Fisher metric



The real mean ξ̄ and covariance Ξ are found interatively



How well our posterior surrogate fits the real posterior?



Kullback-Leibler divergence

DKL(P||Q)=
∫
x p(x) ∗ log(p(x)/q(x))dx







How do we calculate this if we don’t know the real posterior?





The evidence term (marginal) P(d) incomputable, but luckily it is
invariant





We switch between estimating ξ̄ using the Kullback-Leibler divergence
and covariance Ξ using the Fisher metric



This integral is calculated by calculating a mean of random sample from
the approximate posterior distribution

-> we can sample multi-modal
posterior distributions and avoid problems with the convergence by
switching the seed
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They calculated ten independent imaging runs -> good enough to
capture the dominant modes of the posterior, but not enough to estimate
the relative weights reliably

Instead, consistency between different paintings was used as a sanity
check



The sensitivity and selection of arbitrary parameters tested on a mock
data set





Results



Results from the CLEAN algorithm



GRAVITY-RESOLVE (GR) has a problem with fast moving sources

In GRAVITY-RESOLVE (GR) error bars had to be scaled by hand and by
trial-and-error


