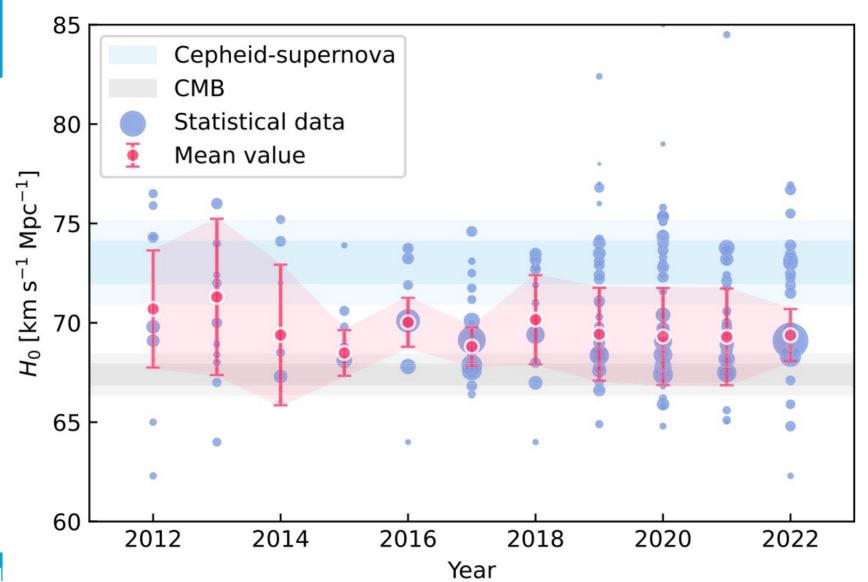

The Hubble tension survey: A statistical analysis of the 2012-2022 measurements

Bao Wang, Martin Lopez-Corredoira, Jun-Jie Wei 2024, MNRAS. 527, 7692

Statistics Journal Club

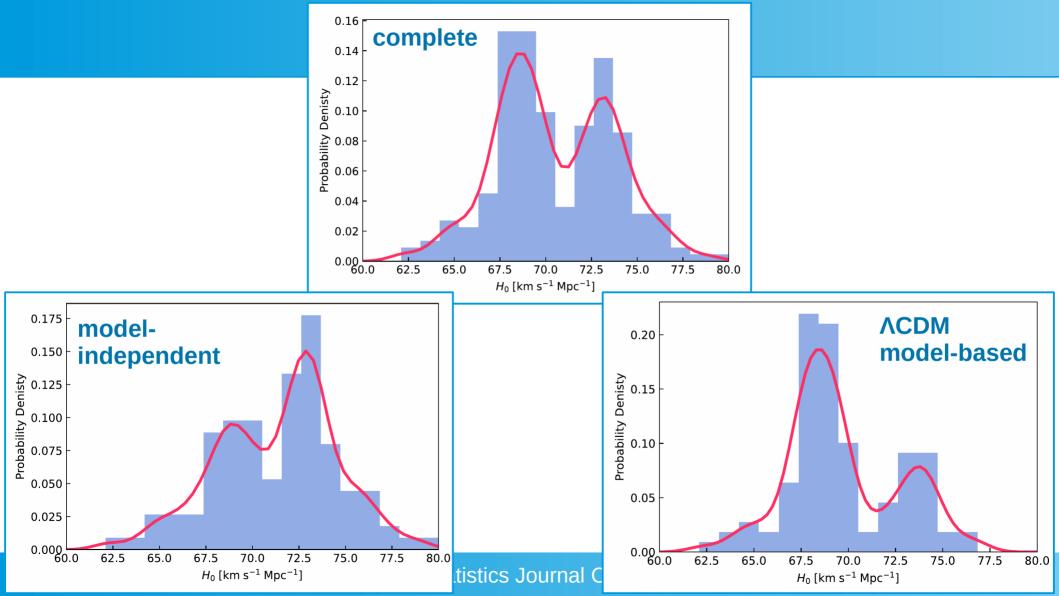

The Hubble Tension



DATA

216 H₀ measurements made between 2012 – 2022:

- **109** from model-independent methods (Cepheids + SNe Ia distance ladder)
- 107 from CMB under the standard ACDM model

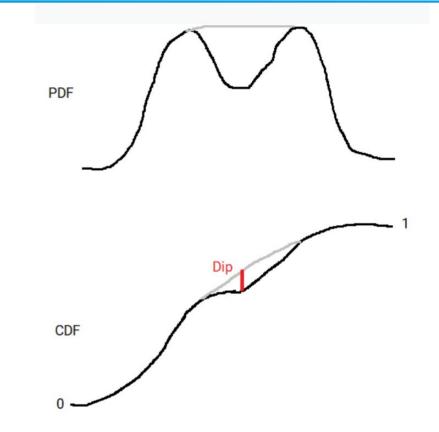


DATA

Data divided into 3 samples:

- **complete** (216)
- model-independent (109)
- ΛCDM model-based (107)

1. Statistical significance of bimodality


The "Dip Test"

- used to test multimodality of distributions (Hartigan & Hartigan 1985) by calculating the **discrepancy** between:
 - the empirical distribution function and
 - the unimodal distribution that minimizes the maximum discrepancy

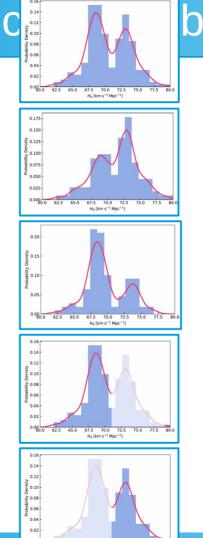
1. Statistical significance of bimodality

The "Dip Test"

- the distribution can be deformed into a unimodal one by moving the CDF by at most the dip at each point
- the **Dip** is the **smallest number** for which this is true

https://skeptric.com/dip-statistic/index.html

1. Statistical significance of bimodality


The "Dip Test"

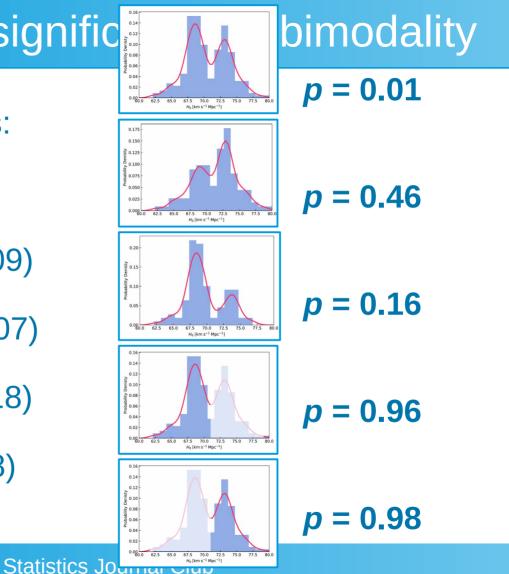
- the *p* value for the dip test the probability of unimodality:
 - p < 0.05 significant multimodality
 - 0.05 marginal multimodality
 - $p \gg 0.05$ unimodality

1. Statistical signific

Data divided into 5 samples:

- complete (216)
- model-independent (109)
- **ACDM model-based** (107)
- H₀ < 71 km s⁻¹ Mpc⁻¹ (118)
- $H_0 \ge 71 \text{ km s}^{-1} \text{ Mpc}^{-1} (98)$

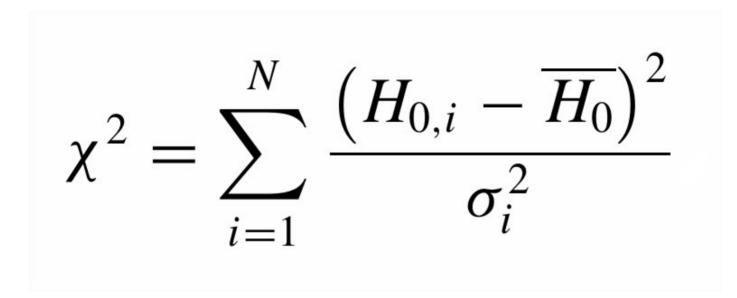
67.5 70.0 72.5


Statistics Journal Cius

bimodality

1. Statistical signific

Data divided into 5 samples:


- complete (216)
- model-independent (109)
- ΛCDM model-based (107)
- H₀ < 71 km s⁻¹ Mpc⁻¹ (118)
- $H_0 \ge 71 \text{ km s}^{-1} \text{ Mpc}^{-1} (98)$

16.01.2024

2. Statistical significance of measurements

2. Statistical significance of measurements

calculated for the same 5 subsamples

2. Statistical significance of measurements

Table 1. The results of dip tests, weighted averages and χ^2 fittings in three categories: complete, model-independent, and Λ CDM model-based measurements. The *Q* values measure the statistical significance for χ^2 fittings, and the *p* values measure the significance of the unimodality for dip tests.

	Number	$\frac{\overline{H_0}}{(\text{km s}^{-1} \text{ Mpc}^{-1})}$	χ ²	Q	р
Complete Model-independent Λ CDM model-based $H_0 < 71 \text{ km s}^{-1} \text{ Mpc}^{-1}$ $H_0 \ge 71 \text{ km s}^{-1} \text{ Mpc}^{-1}$	216 109 107 118 98	$\begin{array}{c} 69.35 \pm 0.12 \\ 70.82 \pm 0.22 \\ 68.94 \pm 0.13 \\ 68.78 \pm 0.07 \\ 73.53 \pm 0.13 \end{array}$	515.99 181.48 237.56 95.09 30.05	$8.85 \times 10^{-27} \\ 1.23 \times 10^{-5} \\ 4.36 \times 10^{-12} \\ 0.93 \\ \sim 1.00$	0.01 0.46 0.16 0.96 0.98

Q > 0.05 means "statistically significant"

Q measures the probability that trends come from chance erros ==> it is unlikely that the trends in 3 groups are due to chance errors

How many outliers should we remove to to reach Q > 0.05 ?

How many outliers should we remove to to reach Q > 0.05?

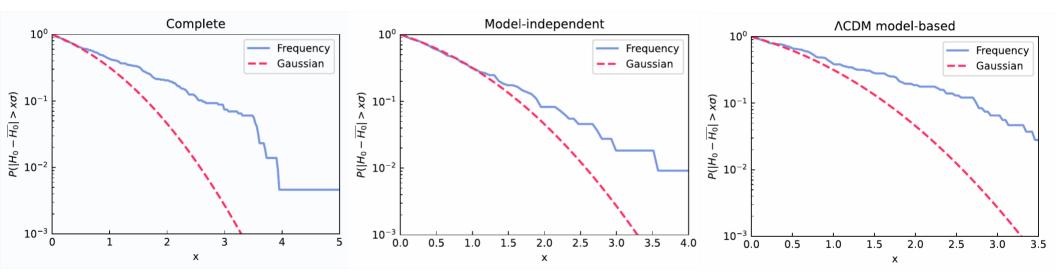
define x – the number of σ deviations between the measurements $H_{0,i}$ and the average \overline{H}_0

$$x = \frac{\left|H_{0,i} - \overline{H_0}\right|}{\sigma_i}$$

then exclude data with $x > x_{min}$ and repeat the analysis

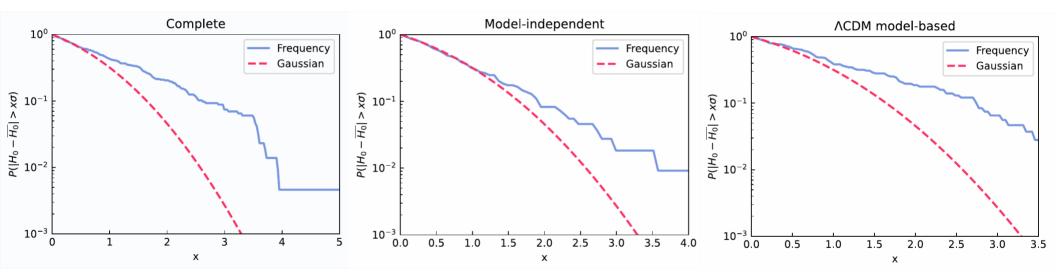
Table 2. The results of weighted averages and χ^2 fittings in three categories after removing the outliers. The number of outliers and minimal deviations are also displayed.

	<i>x</i> _{min}	Outliers	Number	$\frac{\overline{H_0}}{(\text{km s}^{-1} \text{ Mpc}^{-1})}$	χ^2	Q
Complete Model-independent	2.4 3.6	27 1	189 108	69.17 ± 0.09 72.45 ± 0.21	216.42 84.20	0.08 0.95
ACDM model-based	2.6	13	94	68.85 ± 0.10	106.33	0.16


Table 2. The results of weighted averages and χ^2 fittings in three categories after removing the outliers. The number of outliers and minimal deviations are also displayed.

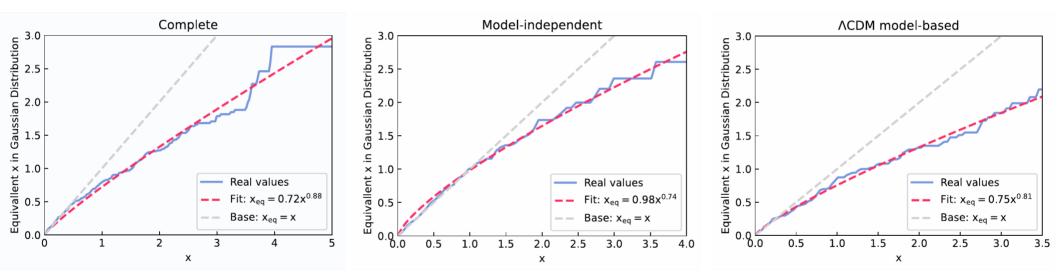
(Mpc^{-1})	
216.42	0.08
= 0.21 84.20	0.95
= 0.10 106.33	0.16
ł	± 0.21 84.20

a sign of a possible tension


==> what is the degree of the tension?

the frequency of deviations larger than $x\sigma$ from H_0

measures the degree to which the sample deviates from the Gaussian


the frequency of deviations larger than $x\sigma$ from H_0

==> define x_{eq} – the equivalent deviation between the probabilities of the the Gaussian distribution and the real frequency

16.01.2024

fit a function $x_{eq} = a * x^b$

i.e. when the deviation of $H_{0,i}$ from H_0 is $x\sigma$, it is actually $x_{eq}\sigma$

$$x_{\rm eq} = (0.719 \pm 0.013) x^{0.879 \pm 0.014}$$
 (Complete)

 $x_{\rm eq} = (0.983 \pm 0.012)x^{0.744 \pm 0.011}$ (Model-independent)

$$x_{\rm eq} = (0.750 \pm 0.007) x^{0.818 \pm 0.009}$$
 (ACDM model-based)

$$x_{eq} = (0.719 \pm 0.013)x^{0.879 \pm 0.014}$$
 (Complete)
$$x_{eq} = (0.983 \pm 0.012)x^{0.744 \pm 0.011}$$
 (Model-independent)
$$x_{eq} = (0.750 \pm 0.007)x^{0.818 \pm 0.009}$$
 (ACDM model-based)

 5σ tension reported by Riess et al. (2022) becomes:

 $x_{eq} = 0.719 * x^{0.879} = 0.719 * 5^{0.879} = (2.96 \pm 0.12)\sigma \approx 3\sigma$

 x_{eq} calibration should be independent of of the data that are tested, so authors recalibrate x_{eq} with data from 1976-2019 and get:

 $x_{eq} = 0.83 * x^{0.62} = 0.83 * 5^{0.62} = 2.25\sigma$

Data divided into 5 samples after removing correlated datasets:

- **complete** (216 → 152)
- model-independent (109 \rightarrow 71)
- **ACDM model-based** (107 \rightarrow 81)
- $H_0 < 71 \text{ km s}^{-1} \text{ Mpc}^{-1} (118 \rightarrow 85)$
- $H_0 \ge 71 \text{ km s}^{-1} \text{ Mpc}^{-1} (98 \rightarrow 67)$

5. The effect of correlated data

Table 4. The results of dip tests, weighted averages and χ^2 fittings in three categories after removing some of the correlated measurements. The *Q* values measure the statistical significance for χ^2 fittings, and the *p* values measure the significance of the unimodality for dip tests.

	Number	$\frac{\overline{H_0}}{(\text{km s}^{-1} \text{ Mpc}^{-1})}$	χ^2	Q	р
Complete	152	69.25 ± 0.13	357.49	8.68×10^{-19}	0.12
Model-independent	71	70.32 ± 0.25	123.61	8.20×10^{-5}	0.62
ΛCDM model-based	81	68.99 ± 0.15	193.89	1.91×10^{-11}	0.13
$H_0 < 71 \mathrm{km s^{-1} Mpc^{-1}}$	85	68.84 ± 0.09	81.13	0.57	0.69
$H_0 \ge 71 \mathrm{km}\mathrm{s}^{-1}\mathrm{Mpc}^{-1}$	67	73.65 ± 0.15	18.35	~ 1.00	0.98

5. The effect of correlated data

Table 4. The results of dip tests, weighted averages and χ^2 fittings in three categories after removing some of the correlated measurements. The *Q* values measure the statistical significance for χ^2 fittings, and the *p* values measure the significance of the unimodality for dip tests.

Model-independent71 70.32 ± 0.25 123.61 8.20×10^{-5} 0.62 $\Lambda CDM model-based$ 81 68.99 ± 0.15 193.89 1.91×10^{-11} 0.13 $H_0 < 71 \mathrm{km s^{-1} Mpc^{-1}}$ 85 68.84 ± 0.09 81.13 0.57 0.69						
Model-independent71 70.32 ± 0.25 123.61 8.20×10^{-5} 0.62 ΛCDM model-based81 68.99 ± 0.15 193.89 1.91×10^{-11} 0.13 $H_0 < 71 \mathrm{km s^{-1} Mpc^{-1}}$ 85 68.84 ± 0.09 81.13 0.57 0.69		Number		χ^2	Q	р
$\Lambda \text{CDM} \text{ model-based}$ 81 68.99 ± 0.15 193.89 1.91×10^{-11} 0.13 $H_0 < 71 \mathrm{km s^{-1} Mpc^{-1}}$ 85 68.84 ± 0.09 81.13 0.57 0.69	Complete	152	69.25 ± 0.13	357.49	8.68×10^{-19}	0.12
$H_0 < 71 \mathrm{km s^{-1} Mpc^{-1}}$ 85 68.84 ± 0.09 81.13 0.57 0.69	Model-independent	71	70.32 ± 0.25	123.61	8.20×10^{-5}	0.62
	ΛCDM model-based	81	68.99 ± 0.15	193.89	1.91×10^{-11}	0.13
$H_0 \ge 71 \mathrm{km s^{-1} Mpc^{-1}}$ 67 73.65 ± 0.15 18.35 ~ 1.00 0.98	$H_0 < 71 {\rm km s^{-1} Mpc^{-1}}$	85	68.84 ± 0.09	81.13	0.57	0.69
	$H_0 \ge 71 \mathrm{km}\mathrm{s}^{-1}\mathrm{Mpc}^{-1}$	67	73.65 ± 0.15	18.35	~ 1.00	0.98

no more multimodality in the **complete** sample (before: *p*=0.01)

5. The effect of correlated data

Table 4. The results of dip tests, weighted averages and χ^2 fittings in three categories after removing some of the correlated measurements. The *Q* values measure the statistical significance for χ^2 fittings, and the *p* values measure the significance of the unimodality for dip tests.

	Number	$\frac{\overline{H_0}}{(\text{km s}^{-1} \text{ Mpc}^{-1})}$	χ^2	Q	р
Complete	152	69.25 ± 0.13	357.49	8.68×10^{-19}	0.12
Model-independent	71	70.32 ± 0.25	123.61	8.20×10^{-5}	0.62
ΛCDM model-based	81	68.99 ± 0.15	193.89	1.91×10^{-11}	0.13
$H_0 < 71 {\rm km s^{-1} Mpc^{-1}}$	85	68.84 ± 0.09	81.13	0.57	0.69
$H_0 \ge 71 \mathrm{km}\mathrm{s}^{-1}\mathrm{Mpc}^{-1}$	67	73.65 ± 0.15	18.35	~1.00	0.98

Q measures the probability that trends come from chance erros ==> it is unlikely that the trends in 3 groups are due to chance errors

16.01.2024

TAKEAWAY

- the Hartigans' **Dip Test** is good to test multimodality
- the bimodal distribution of H₀ is also present in a model-independent sample and a ACDM model-based sample
- the deviation of H₀ measurements with respect to H₀ are larger than expected from their error bars if they follow a Gaussian distribution ==> 5σ tension may in fact be a 3σ tension
- there is a compatibility with a Gaussian distribution for samples where of H₀ < 71 km s⁻¹ Mpc⁻¹ and where H₀ ≥ 71 km s⁻¹ Mpc⁻¹ without the need to remove outliers ==> error underestimation related to methodology (systematics)