
When Models Fail: An Introduction to
posterior predictive checks and model
misspecification in GW astronomy

Romero Shaw, Thrane & Lasky (2022)

Pinaki Roy1

1Ph.D. Astronomy, University of Warsaw

Statistics Journal Club

1 / 22



Outline

INTRODUCTION
Bayestan inference
Goodness of a model
Likelihood misspecification
Forms of misspecification

DIAGNOSIS
Model misspecification
Noise Misspecification

SUMMARY

2 / 22



Bayesian inference (BI)
▶ BI is a method of statistical inference in which Bayes’ theorem

is used to update the probability for a hypothesis as more
evidence or information becomes available. Essentially BI uses
prior knowledge, in the form of a prior distribution in order to
estimate posterior probabilities.

P(H|E ) = P(E |H) · P(H)

P(E )

H → hypothesis / model; P(H) → prior probability
E → data / evidence (not used in computing prior)
P(H|E ) → posterior probability; P(E |H) → likelihood

▶ BI is a powerful tool in GW astronomy. It helps to deduce the
properties of merging compact-object binaries and determine
how these mergers are distributed as a population according
to mass, spin and redshift.
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Article purpose (abstract)

It discusses the phenomenon of model misspecification, in which results
obtained with BI are misleading due to deficiencies in the assumed model.

Such deficiencies can impede our inferences of the true parameters
describing physical systems. They can reduce our ability to distinguish
the ‘best fitting’ model. There are broadly two ways in which models fail.

Firstly, models that fail to adequately describe the data (either the signal
or the noise) have misspecified likelihoods.

Secondly, population models—designed, for example, to describe the
distribution of black hole masses—may fail to adequately describe the
true population due to a misspecified prior.

It recommends tests and checks that are useful for spotting misspecified
models using examples inspired by GW astronomy.
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Article motivation

▶ With the increase in the detector sensitivity and growth of the
GW event catalog, more events are seen that challenge the
existing models.

▶ A signal model that is valid for systems with mass ratios
q ≥ 0.125 may be invalid for a mass ratio of q = 0.001.

▶ A detector noise model adequate for an event with SNR = 30
may be inadequate for an SNR = 100 signal.

▶ A population model for the distribution of binary black hole
redshifts that works reasonably well for a dozen events may be
unsuitable for a catalogue with hundreds of events.
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Goodness of a model (visualisation)

Anscombe’s Quartet (Anscombe 1973): same mean (x̄ , ȳ), variance (s2x ,
s2y ), linear regression line and linear regression coefficient. Bottom two
contain outliers that disrupts the model established by rest of the data.
The top right suggests a non-linear relation between x and y . Only the
first fit is justified.
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Likelihood function
Two different kinds of models are required to do an inference
calculation: a model for the distribution of the data – the
likelihood function – and a model for the distribution of the
parameters – the prior.

Likelihood function: L(d |θ)

where d is the data and θ is a set of parameters describing the
noise and/or signal. The likelihood function is a normalised
probability density function for the data, not for the parameters θ.∫

d(d)L(d |θ) = 1

∫
dθL(d |θ) ̸= 1

Marginal likelihood is defined as

L =

∫
dθL(d |θ)π(d |θ)

where π(d |θ) is the prior distribution for the parameters θ.
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Likelihood function (contd.)
A common model for gravitational-wave data is the Whittle
likelihood model for Gaussian time-series noise (parameter-free):

L(d̃ |θ) = 1

2πσ2
e−|d̃ |2/2σ2

where d̃ represents the frequency-domain gravitational-wave strain
while σ2 is related to the noise power spectral density (PSD), P
and the frequency bin width ∆f as

σ2 =
P

4∆f

For compact binary coalescence, the likelihood depends on ≳ 15
parameters (component masses, spins, etc.) and is given by

L(d̃ |θ) =
∏
k

1

2πσ2
k

e−|d̃k−h̃k (θ)|2/2σ2
k
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Forms of misspecification explored in the Article. Individual events can be
misspecified if the model for the noise or the signal is not an adequate
description of reality. The population of events may also be misspecified.
This manifests itself as prior misspecification, which can impact both
individual analyses and population analyses (where the goal is to uncover
the true distribution of the population).
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Testing for a misspecified signal model

To test for a misspecified waveform, it is useful to look at the
whitened residuals of the data in frequency

r̃(f |θ) = d̃(f )− h̃(f |θ)
σ(f )

and in time
r(t|θ) = F−1 [r̃(f |θ)]

where F−1 is the discrete inverse Fourier transform.

Residuals are useful in testing waveform misspecification because
the differences between waveform models are clearly seen in the
time and frequency domain. Also, terrestrial noise artefact (glitch)
in the data can be seen in the residuals.
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Residuals from best-fit for GW150914

For example, in Abbott et al. (2016), the best-fit, time-domain residuals
for GW150914 were shown to be consistent with Gaussian noise showing
that the data are well explained by a gravitational waveform in Gaussian
noise at both the LIGO detectors.
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Model misspecifiation test: Demonstration
▶ Consider a signal model of sine-Gaussian chirplet (i.e., a sine

wave multiplied by a Gaussian function). Create two synthetic
datasets with Gaussian noise. The correctly specified data
contains a signal that matches the model. The second dataset
contains an intentionally misspecified signal: the same sine
wave as before, but multiplied by a Tukey window. In both
datasets, assume Gaussian noise with a known PSD.
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Supplement 1 - Tukey window
▶ A window function is a mathematical function that is

zero-valued outside of some chosen interval. Tukey window,
or cosine-tapered window, can be regarded as a cosine lobe of
width Nα/2 (spanning Nα/2 + 1 observations) that is
convolved with a rectangular window of width N(1− α/2).
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Model misspecifiation test: Demonstration - plot 1

Figure 4: Time series of the residuals calculated by subtracting two
different waveform models from the simulated data. The plot on the left
shows the residuals obtained by subtracting a correctly specified
waveform that matches the signal hidden in the data, while those
obtained by subtracting a misspeified waveform are on the right.
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Model misspecifiation test: Demonstration - plot 2

Figure 5: Frequency-domain amplitude spectral densities of the residuals.
It is not totally clear from the time domain data if one of the datasets is
poorly specified by the model, but Fourier transforming the residuals
reveals a suspicious peak inconsistent with Gaussian noise. On both rows,
the residuals are plotted in grey while the pink band indicates the range
where the model predicts 90% of the residuals will lie.
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Model misspecifiation test: Demonstration - plot 3

Figure 6: CDFs for the residuals of the time-domain data (grey) and
predicted range of the residuals (pink). KS-statistic for the correctly
specified and misspecified distributions is calculated. The location at
which the KS test finds the maximum vertical distance b/w the model
and the data is indicated with a dotted line. For this realisation of
Gaussian noise, the KS-statistics are 0.01 and 0.06 for the correctly
specified and misspecified data, with respective p-values of 0.85 and 0.00
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Noise misspecifiation test: Demonstration

▶ Consider that the true noise is Gaussian with a mean µ = 0
and standard deviation σ = 1. The misspecified noise is
distributed according to the Student’s t distribution with
ν = 5. These parameters are chosen so that the noise profiles
appear, at first glance, to be consistent with each other.

▶ Take the Fourier transform of the datasets and compare the
90% range predicted by the noise model against histograms of
the data in the frequency domain. In the frequency domain,
the misspecified data more clearly strays outside of the range
predicted by the model.

▶ Create a CDF of the frequency-domain data and perform
KS-test. An extreme p-value suggests misspecified noise data.
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Supplement 2 - Student’s t-distribution
▶ Student’s t distribution is a continuous probability distribution

that generalizes the standard normal distribution. Like the
latter, it is symmetric around zero and bell-shaped. tν has
heavier tails and the amount of probability mass in the tails is
controlled by the parameter ν. For ν → ∞, it becomes the
standard normal distribution which has very “thin” tails.
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Noise misspecifiation test: Demonstration - plot 1

Figure 7: Simulated noise distributed as a Gaussian in the frequency
domain. The correctly specified Gaussian distribution (left) and the
similar-but misspecified Student’s t distribution (right). The predicted
(90% credible) range predicted by the model is shown by the pink band.
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Noise misspecifiation test: Demonstration - plot 2

Figure 8: CDFs for frequency-domain residuals (grey) and the range
predicted by the model (pink). For these specific noise realisations, the
KS-statistics are 0.01 and 0.03 for the correctly specified and misspecified
models, with p-values of 0.89 and 0.00 respectively. The location of the
maximal KS distance is noted by a dotted line.
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Noise misspecifiation test: Demonstration - plot 3

Figure 9: Like the previous plot, but the difference in data and model
CDFs as a function of the data CDF.
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CONCLUSION
▶ The article discusses various ways in which models can be

tested for misspecification.

▶ Since all physical models are to some degree – misspecified,
The question is not whether a model is wrong, but whether it
is adequate or good-enough to describe a signal.

▶ The article employs statistical tools: Tukey window, Student’s
t-distribution, Gausssian distribution, KS-test and cumulative
distribution function (CDF).

▶ The article uses the term cumulative density function (CDF)
which is inappropriate. “The two words cumulative and
density contradict each other. The value of a density function
in an interval about a point depends only on probabities of
sets in arbitrarily small neighborhoods of that point, so it is
not cumulative.” en.wikipedia.org/wiki/Cumulative density function
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