Introduction to Neural Networks

Radek Poleski

rpoleski@astrouw.edu.pl

23.10.2024



Motivation

e Chat GPT (Nov 2022),

Radek Poleski Introduction to Neural Networks



Motivation

e Chat GPT (Nov 2022),
® End of semester poll of SJC (Jun 2024),

Radek Poleski Introduction to Neural Networks



Motivation

e Chat GPT (Nov 2022),
® End of semester poll of SJC (Jun 2024),
® OpenAl olpreview (Sep 2024),

Radek Poleski Introduction to Neural Networks



Motivation

Chat GPT (Nov 2022),

End of semester poll of SJC (Jun 2024),

OpenAl olpreview (Sep 2024),

Nobel prizes in physics and chemistry (Oct 2024).

Radek Poleski Introduction to Neural Networks



Motivation

Chat GPT (Nov 2022),

End of semester poll of SJC (Jun 2024),

OpenAl olpreview (Sep 2024),

Nobel prizes in physics and chemistry (Oct 2024).

CAN MOST NOBEL LAUREATES IN PHYSICS SOLVE
ALL THE PROBLEMS IN JACKSON'S ELECTRODYNAMICS?
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Simple Neural Networks
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Feedforward Neural Network

hidden layer output layer
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Very Simple Neural Network

Input Hidden Output
2 (2 sigmoid) (1 sigmoid)

LeCun et al. 2015; https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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First Neural Network in Astronomy

Storrie-Lombardi et al. 1992
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First Neural Network in Astronomy

Table 2. Galaxy classification.

Class

SO
Sa+Sb
Sc+Sd

(a) ANN
E SO Sa+Sb Sc+Sd
203 77 25 1
109 229 240 7
12 85 1281 218
1 4 304 415
0 0 53 69 126

ErpowfE

E
197
134
106

22
22

Storrie-Lombardi et al. 1992

Radek Poleski

(b) ESO AUTO

SO Sa+Sb Sc+Sd
87 17 5
218 155 28
12 791 664
11 24 631
9 31 42
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Activation Functions
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Smooth Activation Functions
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Ability to Approximate

Bishop 2009 "Pattern Recognition and Machine Learning"
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Rectified Linear Unit (ReLU)

Nonlinearities
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LeCun et al. (2015): ReLU typically learns much faster in networks
with many layers than tanh(z) or 1/(1+4exp(-z)).
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Learning/training
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What it means to learn or teach the neural network?
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Backpropagation 1

zj = h(aj), where h() is the activation function.
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Backpropagation 1

zj = h(aj), where h() is the activation function.
aj = Y ; w; izi, where we sum over all units that send connections
to unit j in forward propagation.
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Backpropagation 1

zj = h(aj), where h() is the activation function.
aj = Y ; w; izi, where we sum over all units that send connections
to unit j in forward propagation.
Loss function E, e.g., E =", (yx — tx)? where yj are network
outputs and t, are corresponding target outputs.
To train the network we want to know the gradient OE /0w ;,
which is calculated using chain rule:

I5)=} . OE 831'

(3Wj,,' N Baj 8Wj7;.
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Backpropagation 1

zj = h(aj), where h() is the activation function.

aj = Y ; w; izi, where we sum over all units that send connections
to unit j in forward propagation.
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Backpropagation 1

zj = h(aj), where h() is the activation function.
aj = Y ; w; izi, where we sum over all units that send connections
to unit j in forward propagation.
Loss function E, e.g., E =", (yx — tx)? where yj are network
outputs and t, are corresponding target outputs.
To train the network we want to know the gradient OE /0w ;,
which is calculated using chain rule:

I5)=} . OE 831'

(3Wj,,' N 6aj 8Wj7;.
We introduce notation: §; = 9E/0a;.
From definition of a; we have:

ow;,i

Radek Poleski Introduction to Neural Networks



Backpropagation 1

zj = h(aj), where h() is the activation function.

aj = Y ; w; izi, where we sum over all units that send connections
to unit j in forward propagation.

Loss function E, e.g., E =", (yx — tx)? where yj are network
outputs and t, are corresponding target outputs.

To train the network we want to know the gradient OE /0w ;,
which is calculated using chain rule:

8E _8£ 831'
(3Wj,,' N 6aj 8Wj7;.

We introduce notation: §; = 9E/0a;.
From definition of a; we have:

8aj
= Zj.
Owj,j
After substituting:
OE 5
= 0;Zz
owi
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Backpropagation 2

We have to find §; — use chain rule once more:

_OE < OE 0a
6" - 8aj _;83;( aaj'
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Backpropagation 2

We have to find §; — use chain rule once more:
] Z 0E 8ak
% = 831 day Da;’
From the definition of ay = 3, wy ;z; and z; = h(a;):

Oay _ ZW ,8/7(31‘)‘

. ki .
0a; - 0aj
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Backpropagation 2

We have to find §; — use chain rule once more:
OE OE 0Oay
= — = _—
J 6aj ; aak 8aj
From the definition of ay = 3, wy ;z; and z; = h(a;):

% _ Z W ,ah(aj)

) kyj o
0a; Oaj

J

Last two equations combined:

6j = h'(aj) Z 5ka,j'
k
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Backpropagation 2

We have to find §; — use chain rule once more:
OE OE 0Oay

§i=o =Y -2k
J aaj ; aak 8aj

From the definition of ay = 3, wy ;z; and z; = h(a;):

8ak o 8h(aj)
Ty T 2 0y
Last two equations combined:
6j = h'(aj) Z 5ka,j'
k

Compare it with

3= Y WKz
k
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Backpropagation 3 — algorithm

1. Feed forward network using a; = >, w; ;z; and z; = h(a;).
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Backpropagation 3 — algorithm

1. Feed forward network using a; = >, w; ;z; and z; = h(a;).

2. Evaluate 4 for output units: o, = 2(yx — tx)h'(ak)-
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Backpropagation 3 — algorithm

1. Feed forward network using a; = > ; w; ;zi and z; = h(a;).
2. Evaluate 4 for output units: o, = 2(yx — tx)h'(ak)-

3. Evaluate J; for all other units using backpropagation:
6j = h(aj) Dk OkWic,j-
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Backpropagation 3 — algorithm

1. Feed forward network using a; = > ; w; ;zi and z; = h(a;).
2. Evaluate 4 for output units: o, = 2(yx — tx)h'(ak)-
3. Evaluate J; for all other units using backpropagation:
6j = h(aj) Dk OkWic,j-
4. Evaluate derivatives: 0E/0w;; = ;z;.
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Backpropagation 3 — algorithm

1. Feed forward network using a; = > ; w; ;zi and z; = h(a;).
2. Evaluate 4 for output units: o, = 2(yx — tx)h'(ak)-
3. Evaluate J; for all other units using backpropagation:
(5] = h’(aj) Zk (5ka71'.
4. Evaluate derivatives: 0E/0w;; = ;z;.
5. Use derivatives to update weights w; ;.
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Deep Learning
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Deep learning — basic notes

Representation learning — automatic detection or classification
based on raw data, i.e., no domain expertise needed.
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representation. Each level is composed of modules that transform
representations from one level down to the more abstract level up.
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Deep learning — basic notes

Representation learning — automatic detection or classification
based on raw data, i.e., no domain expertise needed.

Deep learning — representation learning with multiple levels of
representation. Each level is composed of modules that transform
representations from one level down to the more abstract level up.
Each module increases selectivity and the invariance of the
representation. For images typically:

1. pixel values,

2. presence of edges at particular locations and orientations,
3. detection of motifs by particular arrangements of edges,
4. detection of objects composed of motifs,

5 ...
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Deep learning — basic notes

Representation learning — automatic detection or classification
based on raw data, i.e., no domain expertise needed.

Deep learning — representation learning with multiple levels of
representation. Each level is composed of modules that transform
representations from one level down to the more abstract level up.
Each module increases selectivity and the invariance of the
representation. For images typically:

1. pixel values,
2. presence of edges at particular locations and orientations,
3. detection of motifs by particular arrangements of edges,
4. detection of objects composed of motifs,
5 ...

Typically there are between 5 and 20 layers in deep networks.

based on LeCun et al. (2015)

Radek Poleski Introduction to Neural Networks



Deep Learning input/output data

Convolutional Neural Networks (CNN) — finite data, i.e., images or
RGB images.
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Deep Learning input/output data

Convolutional Neural Networks (CNN) — finite data, i.e., images or
RGB images.

Recurrent Neural Networks (RNN) — possibly infinite data, i.e.,
sound, text, lightcurves(?).
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Deep Learning input/output data

Convolutional Neural Networks (CNN) — finite data, i.e., images or
RGB images.

Recurrent Neural Networks (RNN) — possibly infinite data, i.e.,

sound, text, lightcurves(?).

Many natural signals have structure of hierarchies: higher-level
features are composed of lower-level ones. Deep networks exploit
this by using many layers.
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Convolutional Neural Networks
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Digit recognition

Digit - 7 Digit - 2 Digit - 8

0 0
B
0 0

0 20 0 20

Digit - 9 Digit - 1 Digit - 0 Digit - 5

0 0 0 0
10 D D -
20 o o b
0 20 0 20 0 20 0 20

Sample Digits from MNIST dataset

Digits are invariant under translation, scaling, and small rotations.
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Digit recognition

Digit - 3 Digit - 7 Digit - 2 Digit - 8

Digit - 9 Digit - 1 Digit - 0 Digit - 5

0 0 0 0
10 D D -
20 o o b
0 20 0 20 0 20 0 20

Sample Digits from MNIST dataset

Digits are invariant under translation, scaling, and small rotations.
Nearby pixels are more strongly correlated than distant pixels.
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Digit recognition

Digit - 3 Digit - 7 Digit - 2 Digit - 8

Digit - 9 Digit - 1 Digit - 0 Digit - 5

0 0 0 0
10 D D -
20 o o b
0 20 0 20 0 20 0 20

Sample Digits from MNIST dataset

Digits are invariant under translation, scaling, and small rotations.
Nearby pixels are more strongly correlated than distant pixels.

We have to start from local image features but it's hard to keep
that information in fully-connected feed-forward network.
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CNN structure

fc_3 fc_a
Fully-Connected Fully-Connected
Neural Network Neural Network

Conv_1 Conv_2 ReLU activation
Convolution Convolution A /—M

(5 x 5) kernel (5 x 5) kernel

. : Max-Pooling = > Max-Pooling (with
valid padding (2x2) valid padding (2x2) \\.dropout)

INPUT nl channels n1 channels n2 channels n2 channels |||

(28x28x1) (24 x24 xn1) (12x12xnl) (8x8xn2) (4x4xn2) | _ )~

o
(C-]

saturncloud.io

OUTPUT

n3 units

CNN: convolution + sub-sampling/pooling layers.
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CNN structure

fc_3 fc_a
Fully-Connected Fully-Connected
Neural Network Neural Network

Conv_1 Conv_2 ReLU activation
Convolution Convolution A /—M

(5 x 5) kernel (5 x 5) kernel

Max-Pooling Max-Pooling i
valid padding 2x2) valid padding (2x2) (ith

/& dropout)

o
[C-]

saturncloud.io

INPUT nl channels n1 channels n2 channels n2 channels |||

(28x28x1) (24 x 24 xn1) (12x12xnl) (8 x8xn2) (4x4xn2) | g OUTPUT

n3 units

In convolution layer there are planes called feature maps.
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CNN structure

fc_3
Fully-Connected
Neural Network

Conv_1 Conv_2 RelU activation
Convolution Convolution
(5x 5) kernel Max-Pooling (5 x 5) kernel Max-Pooling
valid padding 2x2) valid padding (2x2)

.

fc_a
Fully-Connected
Neural Network

K_M

(with

saturncloud.io

INPUT n1 channels n1 channels n2 channels n2 channels “‘“ E
(28x28x1) (24 x24 xn1) (12x12xn1) (8x8xn2) (4x4xn2) "// .
n3 units
In convolution layer there are planes called feature maps. Units of

feature map take small parts of the input data and apply weights.

Radek Poleski
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CNN structure

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution A f—M
(5 X 5) kerr.1el Max-Pooling (5 X 5) ke".'EI Max-Pooling (with
valid padding 2x2) valid padding (2x2) ;

\.dropout)

2

\| AN K
INPUT n1 channels nl channels n2 channels n2 channels ||| s ' 93
(28x28x1) (24 x24x n1) (12x12xn1) (8 x8xn2) (4x4xn2) | I ¢ OUTPUT

n3 units

saturncloud.i

In convolution layer there are planes called feature maps. Units of
feature map take small parts of the input data and apply weights.
Weights are the same for all units in a map (convolution!; number
of weights) but different maps have different weights.
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CNN structure

fc_3 fc_a
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution )\ /—M
(5 X 5) kerr.1el Max-Pooling (5 ¥ 5) ke"_'EI Max-Pooling (with
valid padding 2x2) valid padding (2x2)

.

\ \ o

2 ch | 2 ch is\| & // 5

INPUT nlchannels nl channels nZ channels AZschannels, | = /‘ 9 'g
(28x28x1) (24 x 24 xnl) (12x12xnl) (8x8xn2) (4x4xn2) | OUTPUTE
5

n3 units b

w

Each feature map detects a single pattern but at different locations
on the image.
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CNN structure

fc_3
Fully-Connected
Neural Network

Conv_1 RelU activation

Conv_2

Convolution

Convolution

fc_4
Fully-Connected
Neural Network

K_M

(5 x 5) kernel
valid padding

a

(5 x 5) kernel
valid padding

Max-Pooling
(2x2)

Max-Pooling

‘ (with
e\ .dropout)

\ o
2 channels ||| & // 3

INPUT nlchannels nl channels n2 channels nZchannels; \ =/ - ' 9 'g
(28x28x1) (24x24xn1) (12x12xnl1) (8x8xn2) (4x4xn2) '/ ouPuT S
5

n3 units H

n

Each feature map detects a single pattern but at different locations
on the image. Two units that are close on feature map take nearby
parts of the input data.
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CNN structure

fc_3 fc_a
Fully-Connected Fully-Connected
Neural Network Neural Network

Conv_1 Conv_2 ReLU activation
Convolution Convolution A /—M

(5 x 5) kernel (5 x 5) kernel

. A Max-Pooling = > Max-Pooling (with
valid padding (2x2) valid padding (2x2) _/NOM dropout)
P G R U G 0

INPUT nl channels n1 channels n2 channels n2 channels |||

(28x28x 1) (24 x24xn1) (12x12xn1) (8x8xn2) (4x4xn2) | _ ) 7

o
[C-]

saturncloud.io

OUTPUT

n3 units

Pooling layer takes inputs from nearby parts of its input data.
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CNN structure

fc_3 fc_a
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution A K_M
|(/51)'(d5) k:;'_‘:l Max-Pooling (SI)'(dS) k::_'EI Max-Pooling (with
alid padding (2x2) valid padding (2x2) B\ dropouty

2

\| \ o

2 ch | 2 ch s\\| & // 5

INPUT nlchannels nl channels nZ channels AZschannels, | = /‘ 9 'g
(28x28x1) (24 x 24 xn1) (12x12xnl) (8x8xn2) (4x4xn2) | OUTPUTE
5

n3 units b

w

Pooling layer takes inputs from nearby parts of its input data. The
inputs are small (e.g., 2x2) and non-overlapping.
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CNN structure

fc_3
Fully-Connected
Neural Network
RelU activation

Conv_1
Convolution
(5 x 5) kernel

Conv_2
Convolution
(5 x 5) kernel

Max-Poolin; Max-Pooling
valid padding Wg valid padding (2x2)

A [

INPUT
(28x28x1)

n2 channels
(4x4xn2)

n2 channels
(8x8xn2)

nl channels
(12x12 xnl)

nlchannels
(24 x24 x nl)

Pooling layer takes inputs from nearby parts of its input
inputs are small (e.g., 2x2) and non-overlapping.
average() operations.

Radek Poleski

‘ (with
7NN\ .dropout)

fc_4
Fully-Connected
Neural Network

/_M

\ K
BN, XX
\ o/ o
'/,' OUTPUT g
3
n3 units H
data. The

It does max() or
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CNN structure

fc_3 fc_a
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution A f—M
(Sl)de) k:(r:el Max-Pooling (SI)'(dS) k:;'.'EI Max-Pooling ‘ (with
valid padding (2x2) valid padding (2x2) N dropout]

2

INPUT nlchannels nl channels n2 channels n2 channels ||| E ' 9
(28x28x1) (24 x24xn1) (12x12xn1) (8x8xn2) (4x4xn2) |

' - OUTPUT

n3 units

2

saturncloud

Pooling layer takes inputs from nearby parts of its input data. The
inputs are small (e.g., 2x2) and non-overlapping. It does max() or
average() operations. This makes invariance to small shifts of
network input data.
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CNN structure

fc_3 fc_a
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 ReLU activation
Convolution Convolution A /—M
(5x5) kernel Max-Pooling (5x 5) kernel Max-Pooling (with
valid padding 2x2) valid padding (2x2) ‘

\\.dropout)

N \ i\ B
2 ch | 2 ch Is \\| = i 5

INPUT nlchannels nl channels n2 channels AZchannels | = ‘ 9 'g
(28x28x1) (24 x24 x n1) (12x12xn1) (8 x8xn2) (4x4xn2) OUTPUTE
5

n3 units b

w

Pooling layer takes inputs from nearby parts of its input data. The
inputs are small (e.g., 2x2) and non-overlapping. It does max() or
average() operations. This makes invariance to small shifts of
network input data. In successive steps, the spatial resolution is
reduced but number of features extracted increases.
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CNN structure

Conv_1
Convolution
(5 x 5) kernel
valid padding

3

INPUT
(28x28x1)

Max-Pooling
(2x2)

nlchannels
(24 x24 x nl)

Conv_2
Convolution
(5 x 5) kernel
valid padding

nl channels
(12x12xnl)

fc_3

Fully-Connected
Neural Network

RelU activation

Max-Pooling
(2x2)

n2 channels
(8x8xn2)

. (with
T \\.dropout)

n2 channels \||

(4x4xn2)

fc_ 4
Fully-Connected
Neural Network

/—M

O
[(-]

saturncloud.io

'/ OUTPUT

n3 units

Pooling can be done from different feature maps, but from similar

locations.
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CNN structure

fc_3 fc_a
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution )\ /—M
(5 X 5) kerr.1el Max-Pooling (5 ¥ 5) ke"_'EI Max-Pooling (with
valid padding 2x2) valid padding (2x2)

.

\ \ o

2 ch | 2 ch is\| & // 5

INPUT nlchannels nl channels nZ channels AZschannels, | = /‘ 9 'g
(28x28x1) (24 x 24 xnl) (12x12xnl) (8x8xn2) (4x4xn2) | OUTPUTE
5

n3 units b

w

At the end typically there is a fully-connected feed-forward network
that makes flattening on its input.
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CNN - final notes

Key ideas behind CNNs:
® |ocal connections,
® shared weights,

® pooling,

use of many layers.

LeCun+15
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Recurrent Neural Networks

Radek Poleski Introduction to Neural Networks



Recurrency

0

O Ot Ot 0141
A A
VT 74 \% v
SO:>W W i1 - St = Osm o
Unfold L
U U U U
x X X X1

U, V, and W are matrixes.
Hard to train using backpropagation.
Memory can be implemented.

Long Short-Term Memory (LSTM)
Gated Recurrent Unit (GRU)

Radek Poleski Introduction to Neural Networks
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Example CNN+RNN
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Network Structure

14x14 Feature Map

A
bird
flying
over
~la
body
of
water

Image  Feature Extraction

1. Input 2. Convolutional 3.

RNN with attention 4. Word by
over the image word

generation)
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Successes

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

w e e

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
mountain in the background.

Alittle girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

Radek Poleski Introduction to Neural Networks
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Failures

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

A woman holding a clock in her hand. A man wearing a hat and
a hat on a skateboard.

A large white bird standing in a forest.

_—

A man is talking on his cell phone

Xu+15 1502.03044

A person is standing on a beach A woman is sitting at a table
with a surfboard. with a large pizza. while another man watches.
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Last slide

® Feed-forward

® Fully-connected

® Features

e Activation functions
® Backpropagation

® Deep learning

e CNN

e RNN
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