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Motivation

• Chat GPT (Nov 2022),
• End of semester poll of SJC (Jun 2024),
• OpenAI o1preview (Sep 2024),
• Nobel prizes in physics and chemistry (Oct 2024).
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Simple Neural Networks

Activation Functions

Learning/training

Deep Learning

Convolutional Neural Networks

Recurrent Neural Networks

Example CNN+RNN
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Feedforward Neural Network
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Very Simple Neural Network

LeCun et al. 2015; https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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First Neural Network in Astronomy

Storrie-Lombardi et al. 1992
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Smooth Activation Functions
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Ability to Approximate

Bishop 2009 "Pattern Recognition and Machine Learning"
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Rectified Linear Unit (ReLU)
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LeCun et al. (2015): ReLU typically learns much faster in networks
with many layers than tanh(z) or 1/(1+exp(-z)).
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What it means to learn or teach the neural network?
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Backpropagation 1

zj = h(aj), where h() is the activation function.
aj =

∑
i wj ,izi , where we sum over all units that send connections

to unit j in forward propagation.
Loss function E , e.g., E =

∑
k(yk − tk)2, where yk are network

outputs and tk are corresponding target outputs.
To train the network we want to know the gradient ∂E/∂wj ,i ,
which is calculated using chain rule:

∂E
∂wj ,i

=
∂E
∂aj

∂aj

∂wj ,i
.

We introduce notation: δj ≡ ∂E/∂aj .
From definition of aj we have:

∂aj

∂wj ,i
= zi .

After substituting:
∂E
∂wj ,i

= δjzi .
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Backpropagation 2

We have to find δj – use chain rule once more:

δj ≡
∂E
∂aj

=
∑
k

∂E
∂ak

∂ak

∂aj
.

From the definition of ak =
∑

j wk,jzj and zj = h(aj):

∂ak

∂aj
=

∑
j

wk,j
∂h(aj)

∂aj
.

Last two equations combined:

δj = h′(aj)
∑
k

δkwk,j .

Compare it with
aj =

∑
k

wj ,kzk .
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Backpropagation 3 – algorithm

1. Feed forward network using aj =
∑

i wj ,izi and zj = h(aj).
2. Evaluate δk for output units: δk = 2(yk − tk)h′(ak).
3. Evaluate δk for all other units using backpropagation:
δj = h′(aj)

∑
k δkwk,j .

4. Evaluate derivatives: ∂E/∂wj ,i = δjzi .
5. Use derivatives to update weights wj ,i .
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Deep learning – basic notes

Representation learning – automatic detection or classification
based on raw data, i.e., no domain expertise needed.

Deep learning – representation learning with multiple levels of
representation. Each level is composed of modules that transform
representations from one level down to the more abstract level up.
Each module increases selectivity and the invariance of the
representation. For images typically:
1. pixel values,
2. presence of edges at particular locations and orientations,
3. detection of motifs by particular arrangements of edges,
4. detection of objects composed of motifs,
5. . . .

Typically there are between 5 and 20 layers in deep networks.
based on LeCun et al. (2015)
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Deep Learning input/output data

Convolutional Neural Networks (CNN) – finite data, i.e., images or
RGB images.

Recurrent Neural Networks (RNN) – possibly infinite data, i.e.,
sound, text, lightcurves(?).

Many natural signals have structure of hierarchies: higher-level
features are composed of lower-level ones. Deep networks exploit
this by using many layers.
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Digit recognition

Digits are invariant under translation, scaling, and small rotations.
Nearby pixels are more strongly correlated than distant pixels.
We have to start from local image features but it’s hard to keep
that information in fully-connected feed-forward network.
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CNN structure

sa
tu

rn
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d.

io

CNN: convolution + sub-sampling/pooling layers.
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In convolution layer there are planes called feature maps.
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CNN structure
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In convolution layer there are planes called feature maps. Units of
feature map take small parts of the input data and apply weights.
Weights are the same for all units in a map (convolution!; number
of weights) but different maps have different weights.
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CNN structure

sa
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io

Each feature map detects a single pattern but at different locations
on the image.
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CNN structure
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Each feature map detects a single pattern but at different locations
on the image. Two units that are close on feature map take nearby
parts of the input data.
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CNN structure
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Pooling layer takes inputs from nearby parts of its input data.
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Pooling layer takes inputs from nearby parts of its input data. The
inputs are small (e.g., 2x2) and non-overlapping.
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Pooling layer takes inputs from nearby parts of its input data. The
inputs are small (e.g., 2x2) and non-overlapping. It does max() or
average() operations.
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CNN structure
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Pooling layer takes inputs from nearby parts of its input data. The
inputs are small (e.g., 2x2) and non-overlapping. It does max() or
average() operations. This makes invariance to small shifts of
network input data. In successive steps, the spatial resolution is
reduced but number of features extracted increases.
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CNN structure

sa
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Pooling can be done from different feature maps, but from similar
locations.
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CNN structure

sa
tu
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At the end typically there is a fully-connected feed-forward network
that makes flattening on its input.
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CNN – final notes

Key ideas behind CNNs:
• local connections,
• shared weights,
• pooling,
• use of many layers.

LeCun+15
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Recurrency

L
eC

un
+

15

U, V , and W are matrixes.
Hard to train using backpropagation.
Memory can be implemented.
Long Short-Term Memory (LSTM)
Gated Recurrent Unit (GRU)
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Network Structure
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Failures
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Last slide

• Feed-forward
• Fully-connected
• Features
• Activation functions
• Backpropagation
• Deep learning
• CNN
• RNN

Radek Poleski Introduction to Neural Networks


	Simple Neural Networks
	Activation Functions
	Learning/training
	Deep Learning
	Convolutional Neural Networks
	Recurrent Neural Networks
	Example CNN+RNN

