

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952480

PyMerger: Detecting Binary Black Hole mergers from the Einstein Telescope Using Deep Learning

Wathela Alhassan¹

Advisor: Prof Tomasz Bulik^{1,2}, Dr. M. Suchenek¹

¹Particle Astrophysics Science and Technology Centre, Nicolaus Copernicus Astronomical Center,

²Astronomical Observatory of the University of Warsaw

Statistics Journal Club, December 4th 2024, Astronomical Observatory, University of Warsaw.

3rd generation detector – Einstein Telescope (ET)

- Better sensitivity of one order of magnitude allowing detection at lower frequency.
- Annual detection rate for BBHs and BNSs of order $10^5 10^6$ and 7×10^4 respectively.
- Detection horizon for BBHs up to redshift z = 100
- BBHs with total solar mass of 20 100 will be visible up to ≈ 20

Credit: Sciencespring.com

3rd generation detector – Einstein Telescope (ET)

□ ET-D design configuration

- Consist of three nested detectors (shown in blue, green and red) in a triangular arrangement.
- Each detector consists of two interferometers, one optimised for lowfrequency (solid) and one for high-frequency sensitivity (dashed).

Credit: et-gw.eu

Motivation

What? Investigate the efficiency of utilizing the time-frequency domain for detecting BBHs in ET data using Convolutional Neural Networks (CNNs).

> Why?

- High volume of data is expected from ET.
- Traditional GWs search methods such as match filtering will become impractical. This is due to the large template bank required and the difficulties in waveforms modelling.
- The generalization ability of Deep Learning presents a promising alternative for gravitational wave data analysis, encompassing both detection and parameter estimation.

Simulation

- Parameters from Belczynski et al. 2020 generated using the population synthesis code StarTrack (Belczynski et al. 2002b,c,a).
- Focus on low and medium BBHs.

Simulation

Experiments:

- Single Subdetector Data (SSDD): Data simulated using only a single subdetector of the ET.
- Three Subdetector Combined Data (TSDCD): Data simulated using all three subdetectors of the ET combined.

Parameters	Values
Detector	SSDD: E1 TSDCD: E1 + E2 + E3
RA and Dec	Random (uniform distribution)
Sources type	BBH
M1 and M2	∈ 15-56 <i>M</i> _☉
Distance	140 – 120,000 Mpc
Inclination angel	Random choice between 0.5 and pi
Starting frequency (f_{low})	SSDD: 30 Hz TSDCD: 5, 10, 15, 20 and 30 Hz
Time step (t_{Δ})	1.0/16384
Polarization phase	Random choices between 0.5 and 2 pi
Coalesence phase	Random choices between 0.5 and 2 pi

Short Time Fourier Transform (STFT)

$$X(\tau,\omega) = \int_{-\infty}^{\infty} x(t)w(t-\tau)e^{-i\omega t}d(t)$$

x(t): signal.w: window function.τ, ω: time and frequency axis.

- ➤ Window: *blackman* window.
- ➤ 1024 length and 50% overlap.
- \geq 62.5 ms temporal resolution.

SSDD Simulation

$$d(t) = \begin{cases} h(t) + n(t), & \text{if data contains a BBH's signal} \\ n(t), & \text{if data contains noise only.} \end{cases}$$

d(t): single-channel time-series datah: BBH signaln: gausian noise

- > 25,000 BBHs injections.
- $\succ f_{low}$: 30 Hz.
- > SNR ranges: 4-5, 5-6, 6-7, 7-8 and >8.

SSDD Simulation

Samples

TSDCD Simulation

$$d_{1}(t) = h_{E1}(t) + n_{1}(t)$$

$$d_{2}(t) = h_{E2}(t) + n_{2}(t)$$

$$d_{3}(t) = h_{E3}(t) + n_{3}(t)$$

$$d_{n}(t) = n_{1}(t) + n_{2}(t) + n_{3}(t)$$

> 125,000 BBHs injections. > f_1 · 5 Hz 10 Hz 15 Hz 20

 F_{low} : 5 Hz, 10 Hz, 15 Hz, 20 Hz and 30 Hz.

> SNR ranges: 4-5, 5-6, 6-7, 7-8 and >8.

TSDCD Simulation

BBH: M1 = 21 | M2 = 25 | avg SNR: 7.6

TSDCD Simulation

Convolutional Neural networks (CNN)

- A type of feed-forward neural network model -- meaning the output from one layer is used as input to the next layer -- for deep learning.
- **Core Components**: Convolutional layers (feature extraction), pooling layers (downsampling), and fully connected layers (classification).
- Key Operation: Uses filters (kernels) to detect patterns (edges, textures, etc.) and builds complexity layer by layer.
- Advantages:
 - Have shown stat-of-the-art performance on image classification and object detection.
 - Automatic extraction of features unlike traditional machine learning algorithms which need to be extracted manually.
 - Ability to handle chaotic data.

Visual Geometry Group Neural Network (VGG)

- A CNN architecture designed for image classification, known for its simplicity and effectiveness.
- **Core Idea**: Uses small (3x3) convolutional filters and increases depth with 16–19 layers for hierarchical feature extraction.
- **Key Features**: Stacked convolutional layers followed by max-pooling, and fully connected layers for classification.
- Advantages: Simple design, improved accuracy with deeper networks, and a balance between computational cost and performance.

	1	\square				\square	p1 - 2	\square		\square		\frown				\square		\square	1	\square		\square)	\square	\square
64		64		128		128		256		256		256		512		512		512		512		512		512				1000	
, >٢		,۷۲	12	. , 2		., ۲	12	۲,		٠,٢		, 7	2	,۲		,۷۲		, ۷۲	12	,۲		Υ,		,۲	12	960		960	960
cor	-	cor	pod	cor	>	cor	ood	cor	-	cor	-	cor	ood	cor	-	cor	-	cor	ood	cor	-	cor	-	cor	ood	fc 4		fc 4	fc 4
3x3		3x3		3x3		3x3		3×3		3×3		3×3		3x3		3x3		3x3		3x3		3×3		3x3					
))		he s))		

VGG 16 architecture consisting of total 16 layers.

Dense Neural Network (DenseNet)

- A CNN architecture where each layer is connected to every other layer in a feed-forward manner.
- **Core Idea**: Promotes feature reuse by concatenating feature maps from all previous layers, reducing redundancy and improving efficiency.
- **Key Features**: Direct connections between layers, compact architecture with fewer parameters, and reduced risk of vanishing gradients.
- Advantages: Efficient use of parameters, improved flow of gradients, and better performance with fewer computations compared to traditional CNNs.

DenseNet architecture consisting of five concatenated convolutional layers.

Deep Residual Network (ResNet)

- A deep CNN architecture introducing *residual connections* to ease the training of very deep networks.
- **Core Idea**: Instead of learning a direct mapping, ResNet learns residuals (differences) by adding shortcut connections between layers.
- Key Features: Shortcut (skip) connections bypass some layers, allowing gradients to flow more effectively and mitigating vanishing gradient problems.
- Advantages: Enables the training of extremely deep networks, improves accuracy, and reduces degradation issues as networks grow deeper.

Residual block

Evaluation Metrics

precision =
$$\frac{TP}{TP+FP}$$

TP: true positives, FP: false positives (FP), FN: false negatives

 \checkmark Measures the proportion of the positive predictions.

 $F1score = 2 * \frac{precision*recall}{precision+recall}$

- ✓ provides a balanced measure of a classifier's performance by considering both Precision and Recall.
- ✓ helps compare and evaluate the overall performance of classification models.

$$\mathsf{recall} = \frac{TP}{TP + FN}$$

✓ Measures the ability of a model to correctly identify all positive cases.

False Positive Rate (FPR) =
$$\frac{FP}{FP+TN}$$

 ✓ Quantifies how often the model incorrectly classifies injected samples as noise.

The higher value of recall, precision and F1-score, the better performance of the model.

SSDD Experiment

CNN models: VGG 16, VGG 19, RestNet-101, DenseNet-121

- > A batch size: 256, learning rate: 0.0001, epochs: 200
- Root Mean Square Propagation (RMSpro) optimizer.
- > Input layer shape: $365 \times 42 \times 1$

Туре	Number of Sample	Train	Test	Val
Injected	25,000	17,000	4000	4000
Only noise	25,000	17,000	4000	4000
Total	50,000	34,000	8000	8000

Total number of: injected and only noise spectrograms for training, testing and validation.

SSDD Results

Alhassan et al. (2023), MNRAS

SSDD ≈6 hours mock

Infernencing on SSDD mock

SSDD Mock results

SSDD Mock results

TSDCD Experiment

CNN models: ResNet-101

- > A batch size: 256, learning rate: 0.0001, epochs: 200
- Root Mean Square Propagation (RMSpro) optimizer.
- ➢ Input layer shape: 365 × 42 × 3

Туре	Number of Sample	Train	Test	Val
Injected Only noise	125,000 125,000	85,000 85,000	20,000 20,000	20,000 20,000
Total	250,000	170,000	40,000	40,000

Classi	ficatio	on R	eport	
 100 A 10 A 10 A 10 A				

Type	precision	recall	f1-score	support
Injected	0.993	0.818	0.897	20,000
Only noise	0.845	0.994	0.914	20,000
avg/ total	0.919	0.906	0.905	40,000

TSDCD Results

SSDD (Alhassan et al. (2022)) versus TSDCD for sources with Flow of 30 H z.

TSDCD Results

TSDCD for sources with F_{low} of 5 H z, 10 H z, 15 H z, 20 H z and 30 H z.

TSDCD ≈ 25 hours mock data

Infernencing on TSDCD mock

TSDCD Mock Results

TSDCD Mock Results

ET-MDC1: Einstein Telescope mock Data Challenge

ET-MDC1 Results

ET-MDC1 Results

ET-MDC1 Results

✓ 11,477 BNS mergers (with optimal SNR starting from 0.2).

✓ 323 BHNS mergers (with optimal SNR starting from 0.1).

MDC1 – Null and only noise

Threshold	Null	Noise
0.5	0	10
0.3	0	1
0.1	0	0

FNR from one week of noise and null data only

PyMerger

- PyMerger is a Python tool for detecting BBH mergers from ET, built based on our trained ResNet model.
- The current version handles only gravitational wave frame file format (.gwf)
- 1.9 minutes to scan one hour of data on an average laptop without GPUs.

https://github.com/wathela/PyMerger

pip install PyMergers

nstallation		
1. Clone the repository:		
git clone https:// cd PyMerger	github.com/your-username/PyMerger.git	ۍ
2. Install the required Pyt	hon packages:	
pip install -r req	uirements.txt	Q
Jsage		
2, E3). The data input pat	h should point to the folder where these three directories are lo	ocated.
usage: pymerger.py [-h] [-r {8192,4096}] [-n NO_SEGMENT] [-c CHANNELS CHANNELS	G CHANNELS] [-t T 🖵
usage: pymerger.py [-h optional arguments: _bbelp] [-r {8192,4096}] [-n NO_SEGMENT] [-c CHANNELS CHANNELS	G CHANNELS] [-t T 🖓
usage: pymerger.py [-h optional arguments: -h,help -r {8192.4096}sa] [-r {8192,4096}] [-n NO_SEGMENT] [-c CHANNELS CHANNELS show this help message and exit mpling-rate {8192.4096}	G CHANNELS] [-t T 🖓
usage: pymerger.py [-h optional arguments: _h,help _r {8192,4096},sa] [-r {8192,4096}] [-n NO_SEGMENT] [-c CHANNELS CHANNELS show this help message and exit mpling-rate {8192,4096} Sampling rate of the input data (either 8192 or 4096).	G CHANNELS] [-t T 🖓
usage: pymerger.py [-h optional arguments: -h,help -r {8192,4096},sa -n NO_SEGMENT,no-] [-r {8192,4096}] [-n NO_SEGMENT] [-c CHANNELS CHANNELS show this help message and exit mpling-rate {8192,4096} Sampling rate of the input data (either 8192 or 4096). segment NO_SEGMENT	G CHANNELS] [-t T 🖵
usage: pymerger.py [-h optional arguments: -h,help -r {8192,4096},sa -n NO_SEGMENT,no-	<pre>] [-r {8192,4096}] [-n NO_SEGMENT] [-c CHANNELS CHANNELS show this help message and exit mpling-rate {8192,4096} Sampling rate of the input data (either 8192 or 4096). segment NO_SEGMENT Number of data segments to be processed for each detec Files in the input directory will be sorted, and the f Default is 1 which means there are 1 unique file from</pre>	G CHANNELS] [-t T 🖵 Default is 8192 ctor (i.e., numbe first 'n' files u each detector.
usage: pymerger.py [-h optional arguments: -h,help -r {8192,4096},sa -n NO_SEGMENT,no- -c CHANNELS CHANNELS	<pre>] [-r {8192,4096}] [-n NO_SEGMENT] [-c CHANNELS CHANNELS show this help message and exit mpling-rate {8192,4096} Sampling rate of the input data (either 8192 or 4096). segment NO_SEGMENT Number of data segments to be processed for each detec Files in the input directory will be sorted, and the f Default is 1 which means there are 1 unique file from CHANNELSchannels CHANNELS CHANNELS</pre>	G CHANNELS] [-t T 🖵 Default is 8192 ctor (i.e., numbe first 'n' files u each detector.
usage: pymerger.py [-h optional arguments: -h,help -r {8192,4096},sa -n NO_SEGMENT,no- -c CHANNELS CHANNELS	<pre>] [-r {8192,4096}] [-n NO_SEGMENT] [-c CHANNELS CHANNELS show this help message and exit mpling-rate {8192,4096} Sampling rate of the input data (either 8192 or 4096). segment NO_SEGMENT Number of data segments to be processed for each detec Files in the input directory will be sorted, and the f Default is 1 which means there are 1 unique file from CHANNELS,channels CHANNELS CHANNELS List of the THREE channels to be processed. Default is</pre>	5 CHANNELS] [-t T 5 Default is 8192 5 tor (i.e., numbe first 'n' files u each detector. 5 ('E1:STRAIN', '
usage: pymerger.py [-h optional arguments: -h,help -r {8192,4096},sa -n NO_SEGMENT,no- -c CHANNELS CHANNELS -t THRESHOLD,thre	<pre>] [-r {8192,4096}] [-n NO_SEGMENT] [-c CHANNELS CHANNELS show this help message and exit mpling-rate {8192,4096} Sampling rate of the input data (either 8192 or 4096). segment NO_SEGMENT Number of data segments to be processed for each detec Files in the input directory will be sorted, and the f Default is 1 which means there are 1 unique file from CHANNELS,channels CHANNELS CHANNELS CHANNELS List of the THREE channels to be processed. Default is shold THRESHOLD</pre>	5 CHANNELS] [-t T 5 Default is 8192 5 tor (i.e., numbe 5 first 'n' files u each detector. 5 ['E1:STRAIN', '
usage: pymerger.py [-h optional arguments: -h,help -r {8192,4096},sa -n NO_SEGMENT,no- -c CHANNELS CHANNELS -t THRESHOLD,thre	<pre>] [-r {8192,4096}] [-n NO_SEGMENT] [-c CHANNELS CHANNELS show this help message and exit mpling-rate {8192,4096} Sampling rate of the input data (either 8192 or 4096). segment NO_SEGMENT Number of data segments to be processed for each detec Files in the input directory will be sorted, and the f Default is 1 which means there are 1 unique file from CHANNELS,channels CHANNELS CHANNELS CHANNELS List of the THREE channels to be processed. Default is shold THRESHOLD Threshold value for merger detection. A value between a lower false positive rate. Default is 0.1 (accepting</pre>	5 CHANNELS] [-t T 5 Default is 8192 5 ctor (i.e., numbe first 'n' files u each detector. 5 ['E1:STRAIN', ' 0.5 and 0, where 9 detection with
usage: pymerger.py [-h optional arguments: -h,help -r {8192,4096},sa -n NO_SEGMENT,no- -c CHANNELS CHANNELS -t THRESHOLD,thre -i INPUT_FILE_DIR, -	<pre>] [-r {8192,4096}] [-n NO_SEGMENT] [-c CHANNELS CHANNELS show this help message and exit mpling-rate {8192,4096} Sampling rate of the input data (either 8192 or 4096). segment NO_SEGMENT Number of data segments to be processed for each detec Files in the input directory will be sorted, and the f Default is 1 which means there are 1 unique file from CHANNELS,channels CHANNELS CHANNELS CHANNELS List of the THREE channels to be processed. Default is shold THRESHOLD Threshold value for merger detection. A value between a lower false positive rate. Default is 0.1 (accepting -input-file-dir INPUT_FILE_DIR</pre>	5 CHANNELS] [-t T 5 Default is 8192 5 tor (i.e., numbe first 'n' files u each detector. 5 ['E1:STRAIN', ' 0.5 and 0, where 5 detection with
usage: pymerger.py [-h optional arguments: -h,help -r {8192,4096},sa -n NO_SEGMENT,no- -c CHANNELS CHANNELS -t THRESHOLD,thre -i INPUT_FILE_DIR, -	<pre>] [-r {8192,4096}] [-n NO_SEGMENT] [-c CHANNELS CHANNELS show this help message and exit mpling-rate {8192,4096} Sampling rate of the input data (either 8192 or 4096). segment NO_SEGMENT Number of data segments to be processed for each detec Files in the input directory will be sorted, and the f Default is 1 which means there are 1 unique file from CHANNELS,channels CHANNELS CHANNELS CHANNELS List of the THREE channels to be processed. Default is shold THRESHOLD Threshold value for merger detection. A value between a lower false positive rate. Default is 0.1 (accepting -input-file-dir INPUT_FILE_DIR Directory containing the input .gwf files.</pre>	CHANNELS] [-t T Default is 8192 tor (i.e., numbe first 'n' files u each detector. ['E1:STRAIN', ' 0.5 and 0, where detection with
usage: pymerger.py [-h optional arguments: -h,help -r {8192,4096},sa -n NO_SEGMENT,no- -c CHANNELS CHANNELS -t THRESHOLD,thre -i INPUT_FILE_DIR, - -f OUTPUT_DIR,out	<pre>] [-r {8192,4096}] [-n NO_SEGMENT] [-c CHANNELS CHANNELS show this help message and exit mpling-rate {8192,4096} Sampling rate of the input data (either 8192 or 4096). segment NO_SEGMENT Number of data segments to be processed for each detec Files in the input directory will be sorted, and the f Default is 1 which means there are 1 unique file from CHANNELS,channels CHANNELS CHANNELS CHANNELS List of the THREE channels to be processed. Default is shold THRESHOLD Threshold value for merger detection. A value between a lower false positive rate. Default is 0.1 (accepting -input-file-dir INPUT_FILE_DIR Directory containing the input .gwf files. put-dir OUTPUT_DIR</pre>	CHANNELS] [-t T Default is 8192 tor (i.e., numbe first 'n' files u each detector. ['E1:STRAIN', ' 0.5 and 0, where detection with

PyMerger

Output sample

Starting_time	End_time	Prob Pred
1000409750.000,	1000409752.500	,0.9300,0
1000409770.000,	1000409772.500	,0.9309,0
1000409772.500,	1000409775.000	,0.9213,0
1000409810.000,	1000409812.500	,0.9611,0
1000409860.000,	1000409862.500	,0.9515,0
1000409935.000,	1000409937.500	0,0.9849,0
1000409995.000,	1000409997.500	,0.9000,0
1000410077.500,	1000410080.000	,0.9019,0
1000410095.000,	1000410097.500	,0.9132,0
1000410170.000,	1000410172.500	,0.9226,0
1000410180.000,	1000410182.500	,0.9108,0
1000410187.500,	1000410190.000	,0.9043,0
1000410250.000,	1000410252.500	0,0.9480,0
1000410350.000,	1000410352.500	,0.9053,0
1000410425.000,	1000410427.500	0,0.9621,0
1000410540.000,	1000410542.500	,0.9075,0
1000410555.000,	1000410557.500	,0.9915,0
1000410565.000,	1000410567.500	,0.9673,0
1000410612.500,	1000410615.000	,0.9934,0
1000410655.000,	1000410657.500	,0.9236,0
1000410680.000,	1000410682.500	0,0.9430,0
1000410745.000,	1000410747.500	,0.9950,0
1000410822.500,	1000410825.000	,0.9225,0
1000410860.000,	1000410862.500	,0.9000,0
1000410900.000,	1000410902.500	,0.9311,0
1000410912.500,	1000410915.000	,0.9312,0
1000411030.000,	1000411032.500	,0.9000,0
1000411085.000,	1000411087.500	,0.9490,0
1000411122.500,	1000411125.000	,0.9100,0
1000411170.000,	1000411172.500	,0.9260,0
1000411242.500,	1000411245.000	,0.9089,0

Papers:

- Detection of Einstein Telescope gravitational wave signals from binary black holes using deep learning, Authors: Wathela Alhassan, T Bulik, M Suchenek
 24/December/2022 MNRAS, stac3797, DOI: 10.1093/mnras/stac3797
- PyMerger: Detecting Binary Black Hole merger from Einstein Telescope Using Deep Learning, Authors: Wathela Alhassan, T Bulik, M Suchenek. ApJ, DOI: 10.3847/1538-4357/ad901e

Thank you!