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3"d generation detector — Einstein Telescope (ET)
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3"d generation detector — Einstein Telescope (ET)
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Motivation

» What? Investigate the efficiency of utilizing the time-frequency domain for detecting BBHs in ET
data using Convolutional Neural Networks (CNNs).

» Why?
= High volume of data is expected from ET.

= Traditional GWs search methods such as match filtering will become impractical. This is due to
the large template bank required and the difficulties in waveforms modelling.

= The generalization ability of Deep Learning presents a promising alternative for gravitational
wave data analysis, encompassing both detection and parameter estimation.



Simulation

* Parameters from Belczynski et al. 2020 generated using the population synthesis code StarTrack
(Belczynski et al. 2002b,c,a).

* Focus on low and medium BBHs.
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Simulation

Experiments:

SSDD: E1 | TSDCD: E1 + E2 + E3
Random (uniform distribution)
Sources type BBH

€ 1556 Mo
L0 140 - 120,000 M

* Single Subdetector Data

(SSDD): Data simulated using only a
single subdetector of the ET.

. Random choice between 0.5 and pi

* Three Subdetector Combined  ormvrmemmssmam SSDD: 30 Hz | TSDCD: 5, 10, 15, 20
Data (TSDCD): Data simulated _ and 30 Hz
using all three subdetectors of the ET 1.0/16384

combined.

Polarization phase Random choices between 0.5 and 2 pi
Coalesence phase Random choices between 0.5 and 2 pi



Short Time Fourier Transform (STFT)

X(t,w) = /oox(t)w(t - 7)) d(?)

0O

x(t): signal. » Window: blackman window.
w: window function. » 1024 length and 50% overlap.
T, w: time and frequency axis. » 62.5 ms temporal resolution.



SSDD Simulation

r . . .
d(r) = h(t) + n(t), if data contains a BBH’s signal
Kn(t), if data contains noise only.
d(t): single-channel time-series data » 25,000 BBHs injections.
h: BBH signal > [ 10w 30 Hz.

n: gausian noise » SNR ranges: 4-5, 5-6, 6-7, 7-8 and >8.



SSDD Simulation
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TSDCD Simulation

di(t) = he1(t) +ni(t)
dy(t) = hga(t) +na(1)
di(t) = he3(t) +n3(t)
dn(t) = ni (1) + na(1) + n3(¢)

» 125,000 BBHs injections.
» fiow: 5 Hz, 10 Hz, 15 Hz, 20 Hz and 30 Hz.
» SNR ranges: 4-5, 5-6, 6-7, 7-8 and >8.



TSDCD Simulation
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TSDCD Simulation
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Convolutional Neural networks (CNN)

* Atype of feed-forward neural network model -- meaning the output from one layer is used as input to the
next layer -- for deep learning.

* Core Components: Convolutional layers (feature extraction), pooling layers (downsampling), and fully
connected layers (classification).

» Key Operation: Uses filters (kernels) to detect patterns (edges, textures, etc.) and builds complexity layer by
layer.

* Advantages:

* Have shown stat-of-the-art performance on image classification and object detection.

* Automatic extraction of features unlike traditional machine learning algorithms which need to be extracted

manually.
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Visual Geometry Group Neural Network (VGG)

* A CNN architecture designed for image classification, known for its simplicity and effectiveness.

* Core Idea: Uses small (3x3) convolutional filters and increases depth with 16—19 layers for hierarchical feature
extraction.

» Key Features: Stacked convolutional layers followed by max-pooling, and fully connected layers for
classification.

* Advantages: Simple design, improved accuracy with deeper networks, and a balance between computational
cost and performance.
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VGG 16 architecture consisting of total 16 layers.



Dense Neural Network (DenseNet)

* A CNN architecture where each layer is connected to every other layer in a feed-forward manner.

* Core Ildea: Promotes feature reuse by concatenating feature maps from all previous layers, reducing
redundancy and improving efficiency.

* Key Features: Direct connections between layers, compact architecture with fewer parameters, and reduced
risk of vanishing gradients.

* Advantages: Efficient use of parameters, improved flow of gradients, and better performance with fewer
computations compared to traditional CNNs.
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Deep Residual Network (ResNet)

* A deep CNN architecture introducing residual connections to ease the training of very deep networks.

* Core Idea: Instead of learning a direct mapping, ResNet learns residuals (differences) by adding shortcut
connections between layers.

» Key Features: Shortcut (skip) connections bypass some layers, allowing gradients to flow more effectively and
mitigating vanishing gradient problems.

* Advantages: Enables the training of extremely deep networks, improves accuracy, and reduces degradation
issues as networks grow deeper.
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Evaluation Metrics

TP

. TP _
precision = —— recall TP+FN

v' Measures the ability of a model to

TP: true positives, FP: false positives (FP), FN: false negatives correctly identify all positive cases.

v' Measures the proportion of the positive predictions.
FP

False Positive Rate (FPR) = ———

precisionxrecall

Flscore = 2 * —
precision+recall

v" Quantifies how often the model

: . incorrectly classifies injected samples as
v’ provides a balanced measure of a classifier's , y J P
performance by considering both Precision and Recall. noise.

v’ helps compare and evaluate the overall performance of
classification models.

The higher value of recall, precision and F1-score, the better performance of the model.



SSDD Experiment

CNN models: VGG 16, VGG 19, RestNet-101, DenseNet-121
» A batch size: 256, learning rate: 0.0001, epochs: 200
» Root Mean Square Propagation (RMSpro) optimizer.
» Input layer shape: 365 x42 x 1

Type Number of Sample Train  Test Val

Injected 25,000 17,000 4000 4000
Only noise 25,000 17,000 4000 4000
Total 50,000 34,000 8000 8000

Total number of: injected and only noise spectrograms for training,
testing and validation.
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SSDD Results

Injected injected
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SSDD =6 hours mock

SNR range # of # of FPR/FNR
injected detection
sources

>8 723 0.001
ET's Mock data
2nd 7-8 723 713 0.014
5 seconds Window
3rd 6-7 723 687 0.050
l STFT 4th 5-6 723 336 0.535
Detection

RO AR > | oo —[ 072

o o -----
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SSDD Mock results

700

600

500

400

300

Number of sources

200

100

4 6 8 10 12 14
SNR

SSDD
Bl Detected
[1 Undetected

16 18

Number of sources

20

1600 -

1400 -

1200

1000

800

600

400

200

10 20 30 40
D, [Gpc]

SSDD
Il All sources
[—1 Undetected

50 60 70



SSDD Mock results
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TSDCD Experiment

CNN models: ResNet-101
» A batch size: 256, learning rate: 0.0001, epochs: 200
» Root Mean Square Propagation (RMSpro) optimizer.
» Input layer shape: 365 x42 x 3

Type Number of Sample Train Test Val
Injected 125,000 85,000 20,000 20,000
Only noise 125,000 85,000 20,000 20,000
Total 250,000 170,000 40,000 40,000
Classification Report
Type precision recall fl-score support

Injected 0.993 0.818  0.897 20,000
Only noise 0.845 0.994 0.914 20,000
avg/ total 0.919 0.906  0.905 40,000




TSDCD Results
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TSDCD Results
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TSDCD =25 hours mock data
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TSDCD Mock Results
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TSDCD Mock Results
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ET-MDC1: Einstein Telescope mock Data Challenge

» First released in 2012 and updated

ET-MDC1 BBH ET-MDC1 BBH ET-MDC1 BBH

in early 2024. 00007 ' |
» 30.8 days (1.3 Terabytes). 50004
» Contains a continuous GW signal plus ¢

5 40001
noise, noise only and null stream. )
» Overlapping signals. ; 3000
> Sampled at 8192 Hz. =

Z 2000
> 59,540 BNS | 6,578 BBH | 1,977 BHNS
» Optimal SNR ranges between 0.13 10001
and 586.12. N | |

0 200 400 600 O 50 100 150 0 200 400 600

» D, of BBH systems ranges from 0.5 Gpc Chirp Mass (M®) D.(Gpo) SNR

to 154.37 Gpc.



ET-MDC1 Results
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ET-MDC1 Results
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ET-MDC1 Results
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v 11,477 BNS mergers (with optimal SNR starting from 0.2).
v 323 BHNS mergers (with optimal SNR starting from 0.1).



MDC1 — Null and only noise
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PyMerger

» PyMerger is a Python tool for detecting
BBH mergers from ET, built based on our
trained ResNet model.

» The current version handles only
gravitational wave frame file format

(.gwf)

> 1.9 minutes to scan one hour of data on
an average laptop without GPUs.

https://github.com/wathela/PyMerger

pip install PyMergers

Installation

1. Clone the repository:

git clone https://github.com/your-username/PyMerger.git
cd PyMerger

2. Install the required Python packages:

pip install -r requirements.txt

Usage

PyMerger assumes that each sub-detector of ET will have a separate .gwf file in three separate directories (E1,
E2, E3). The data input path should point to the folder where these three directories are located.

usage: pymerger.py [-h] [-r {8192,4096}] [-n NO_SEGMENT] [-c CHANNELS CHANNELS CHANNELS] [-t T ©

optional arguments:
-h, —=help show this help message and exit
-r {8192,4096}, --sampling-rate {8192,4096}
Sampling rate of the input data (either 8192 or 4096). Default is 8192
-n NO_SEGMENT, —--no-segment NO_SEGMENT
Number of data segments to be processed for each detector (i.e., numbe
Files in the input directory will be sorted, and the first 'n' files u
Default is 1 which means there are 1 unique file from each detector.
—c CHANNELS CHANNELS CHANNELS, --channels CHANNELS CHANNELS CHANNELS
List of the THREE channels to be processed. Default is ['E1:STRAIN', '
-t THRESHOLD, ——threshold THRESHOLD
Threshold value for merger detection. A value between 0.5 and @, where
a lower false positive rate. Default is 0.1 (accepting detection with
-1 INPUT_FILE_DIR, —input-file-dir INPUT_FILE_DIR
Directory containing the input .gwf files.
-f OUTPUT_DIR, --output-dir OUTPUT_DIR
Directory to store the results.
--verbose Enable verbose mode to print update messages. Default is true.
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OUtpUt Sample Starting_time | End_time | Prob |Pred

19000409750.000,1000409752.500,0.9300,0
1000409770.000,1000409772.500,0.9309,0
1000409772.500,1000409775.000,0.9213,0
1000409810.000,1000409812.500,0.9611,0
1000409860.000,1000409862.500,0.9515,0
1000409935.000,1000409937.500,0.9849,0
1900409995.000,1000409997.500,0.9000,0
1000410077.500,1000410080.000,0.9019,0
1000410095.000,1000410097.500,0.9132,0
1000410170.000,1000410172.500,0.9226,0
1000410180.000,1000410182.500,0.9108,0
1000410187.500,1000410190.000,0.9043,0
1000410250.000,1000410252.500,0.9480,0
1000410350.000,1000410352.500,0.9053,0
19000410425.000,1000410427.500,0.9621,0
1000410540.000,1000410542.500,0.9075,0
1000410555.000,1000410557.500,0.9915,0
1000410565.000,1000410567.500,0.9673,0
1000410612.500,1000410615.000,0.9934,0
1000410655.000,1000410657.500,0.9236,0
1000410680.000,1000410682.500,0.9430,0
1000410745.000,1000410747.500,0.9950,0
1000410822.500,1000410825.000,0.9225,0
1000410860.000,1000410862.500,0.9000,0
1000410900.000,1000410902.500,0.9311,0
1000410912.500,1000410915.000,0.9312,0
1000411030.000,1000411032.500,0.9000,0
19000411085.000,1000411087.500,0.9490,0
19000411122.500,1000411125.000,0.9100,0
1000411170.000,1000411172.500,0.9260,0
1000411242.500,1000411245.000,0.9089,0




Papers:

* Detection of Einstein Telescope gravitational wave signals from
binary black holes using deep learning, Authors: Wathela Alhassan,
T Bulik, M Suchenek
24/December/2022 MNRAS, stac3797, DOI: 10.1093/mnras/stac3797

* PyMerger: Detecting Binary Black Hole merger from Einstein
Telescope Using Deep Learning, Authors: Wathela Alhassan, T
Bulik, M Suchenek. ApJ, DOI: 10.3847/1538-4357/ad901e
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