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3rd generation detector – Einstein Telescope (ET)

• Better sensitivity of one order of magnitude 
allowing detection at lower frequency. 

• Annual detection rate for BBHs and BNSs of 
order 105 − 106 and 7 × 104 respectively. 

• Detection horizon for BBHs up to redshift z = 
100 

• BBHs with total solar mass of 20 - 100 will be 
visible up to ≈ 20 

Credit: Sciencespring.com



3rd generation detector – Einstein Telescope (ET)

q ET-D design configuration

q Consist of three nested detectors (shown in 
blue, green and red) in a triangular 
arrangement. 

q Each detector consists of two 
interferometers, one optimised for low-
frequency (solid) and one for high-frequency 
sensitivity (dashed).

Credit: et-gw.eu



Motivation

Ø What? Investigate the efficiency of utilizing the time-frequency domain for detecting BBHs in ET 
data using Convolutional Neural Networks (CNNs).

Ø Why? 
§ High volume of data is expected from ET.

§ Traditional GWs search methods such as match filtering will become impractical. This is due to 
the large template bank required and the difficulties in waveforms modelling.

§ The generalization ability of Deep Learning presents a promising alternative for gravitational 
wave data analysis, encompassing both detection and parameter estimation.



Simulation
• Parameters from Belczynski et al. 2020 generated using the population synthesis code StarTrack 

(Belczynski et al. 2002b,c,a).
• Focus on low and medium BBHs.



Simulation

• Single Subdetector Data 
(SSDD): Data simulated using only a 
single subdetector of the ET.

• Three Subdetector Combined 
Data (TSDCD): Data simulated 
using all three subdetectors of the ET 
combined.

Parameters Values
Detector SSDD: E1 | TSDCD: E1 + E2 + E3
RA and Dec Random (uniform distribution)
Sources type BBH
M1 and M2 ∈ 15-56 𝑀☉
Distance 140 – 120,000 Mpc
Inclination angel Random choice between 0.5 and pi
Starting frequency (𝑓𝑙𝑜𝑤) SSDD: 30 Hz | TSDCD: 5, 10, 15, 20 

and 30 Hz
Time step (𝑡Δ ) 1.0/16384
Polarization phase Random choices between 0.5 and 2 pi
Coalesence phase Random choices between 0.5 and 2 pi

Experiments:



Short Time Fourier Transform (STFT)

x(t): signal.
w:  window function.
τ, ω: time and frequency axis.

ØWindow: 𝑏𝑙𝑎𝑐𝑘𝑚𝑎𝑛 window.
Ø1024 length and 50% overlap.
Ø62.5 ms temporal resolution.



SSDD Simulation

d(t): single-channel time-series data
h:  BBH signal
n: gausian noise 

Ø25,000 BBHs injections.
Ø𝑓𝑙𝑜𝑤 : 30 Hz.
Ø SNR ranges: 4-5, 5-6, 6-7, 7-8 and >8.



SSDD Simulation



Samples

Injected (signals plus noise) Only-noise



TSDCD Simulation

Ø125,000 BBHs injections.
Ø𝑓𝑙𝑜𝑤 : 5 Hz, 10 Hz, 15 Hz, 20 Hz and 30 Hz.
Ø SNR ranges: 4-5, 5-6, 6-7, 7-8 and >8.



TSDCD Simulation

BBH: M1 = 21 | M2 = 25 | avg SNR: 7.6 



Spectrograms

TSDCD Simulation



Convolutional Neural networks (CNN) 

• A type of feed-forward neural network model -- meaning the output from one layer is used as input to the 
next layer -- for deep learning.

• Core Components: Convolutional layers (feature extraction), pooling layers (downsampling), and fully 
connected layers (classification).

• Key Operation: Uses filters (kernels) to detect patterns (edges, textures, etc.) and builds complexity layer by 
layer.

• Advantages: 
• Have shown stat-of-the-art performance on image classification and object detection.
• Automatic extraction of features unlike traditional machine learning algorithms which need to be extracted 

manually.
• Ability to handle chaotic data.



Visual Geometry Group Neural Network (VGG)
• A CNN architecture designed for image classification, known for its simplicity and effectiveness.

• Core Idea: Uses small (3x3) convolutional filters and increases depth with 16–19 layers for hierarchical feature 
extraction.

• Key Features: Stacked convolutional layers followed by max-pooling, and fully connected layers for 
classification.

• Advantages: Simple design, improved accuracy with deeper networks, and a balance between computational 
cost and performance.

VGG 16 architecture consisting of total 16 layers.



Dense Neural Network (DenseNet)
• A CNN architecture where each layer is connected to every other layer in a feed-forward manner.

• Core Idea: Promotes feature reuse by concatenating feature maps from all previous layers, reducing 
redundancy and improving efficiency.

• Key Features: Direct connections between layers, compact architecture with fewer parameters, and reduced 
risk of vanishing gradients.

• Advantages: Efficient use of parameters, improved flow of gradients, and better performance with fewer 
computations compared to traditional CNNs.

DenseNet architecture consisting of five concatenated convolutional layers.



Deep Residual Network (ResNet)
• A deep CNN architecture introducing residual connections to ease the training of very deep networks.

• Core Idea: Instead of learning a direct mapping, ResNet learns residuals (differences) by adding shortcut 
connections between layers.

• Key Features: Shortcut (skip) connections bypass some layers, allowing gradients to flow more effectively and 
mitigating vanishing gradient problems.

• Advantages: Enables the training of extremely deep networks, improves accuracy, and reduces degradation 
issues as networks grow deeper.

Residual block



Evaluation Metrics

F1score = 2 ∗ $%&'()(*+∗%&'-..
$%&'()(*+/%&'-..

üprovides a balanced measure of a classifier's 
performance by considering both Precision and Recall.

ühelps compare and evaluate the overall performance of 
classification models.

recall = %&
%&'()

ü Measures the ability of a model to 
correctly identify all positive cases.

precision = %&
%&'(&

TP: true positives, FP: false positives (FP), FN: false negatives

ü Measures the proportion of the positive predictions.

The higher value of recall, precision and F1-score, the better performance of the model.

False Positive Rate (FPR) = (&
(&'%)

ü Quantifies how often the model 
incorrectly classifies injected samples as 
noise. 



SSDD Experiment

CNN models: VGG 16, VGG 19, RestNet-101, DenseNet-121  
Ø A batch size: 256, learning rate: 0.0001, epochs: 200
Ø Root Mean Square Propagation (RMSpro) optimizer.
Ø Input layer shape: 365 × 42 × 1

Total number of: injected and only noise spectrograms for training,
testing and validation.



SSDD Results

Alhassan et al. (2023), MNRAS



SSDD Results



SSDD ≈6 hours mock 

Hours SNR range # of 
injected 
sources

# of 
detection

FPR/FNR

1st > 8 723 722 0.001

2nd 7-8 723 713 0.014

3rd 6-7 723 687 0.050

4th 5-6 723 336 0.535

5th 4-5 723 208 0.712

6th Noise only 0 24 0.003

Infernencing on SSDD mock



SSDD Mock results



SSDD Mock results



TSDCD Experiment
CNN models: ResNet-101

Ø A batch size: 256, learning rate: 0.0001, epochs: 200
Ø Root Mean Square Propagation (RMSpro) optimizer.
Ø Input layer shape: 365 × 42 × 3

Classification Report



TSDCD Results

SSDD (Alhassan et al. (2022)) versus TSDCD for sources with 𝐹𝑙𝑜𝑤 of 30 𝐻 𝑧. 



TSDCD for sources with 𝐹𝑙𝑜𝑤 of 5 𝐻 𝑧, 10 𝐻 𝑧, 15 𝐻 𝑧, 20 𝐻 𝑧 and 30 𝐻 𝑧.

TSDCD Results



TSDCD ≈25 hours mock data

Infernencing on TSDCD mock



TSDCD Mock Results



TSDCD Mock Results



ET-MDC1: Einstein Telescope mock Data Challenge

Ø First released in 2012 and updated 
in early 2024.
Ø 30.8 days (1.3 Terabytes).
Ø Contains a continuous GW signal plus 
noise, noise only and null stream.
Ø Overlapping signals.
Ø Sampled at 8192 Hz.
Ø 59,540 BNS | 6,578 BBH | 1,977 BHNS 
ØOptimal SNR ranges between 0.13 
and 586.12.
Ø DL of BBH systems ranges from 0.5 Gpc 
to 154.37 Gpc.



ET-MDC1 Results



ET-MDC1 Results



ü 11,477 BNS mergers (with optimal SNR starting from 0.2).
ü 323 BHNS mergers (with optimal SNR starting from 0.1).

ET-MDC1 Results



MDC1 – Null and only noise

Threshold Null Noise

0.5 0 10

0.3 0 1

0.1 0 0

FNR from one week of noise and null data only



PyMerger

ØPyMerger is a Python tool for detecting 
BBH mergers from ET, built based on our 
trained ResNet model.

ØThe current version handles only 
gravitational wave frame file format 
(.gwf) 

Ø1.9 minutes to scan one hour of data on 
an average laptop without GPUs. 

https://github.com/wathela/PyMerger



PyMerger



Output sample
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T Bulik, M Suchenek
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