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Overview

Motivation: Why Physics-Informed ML?
What are PINNs?
Advantages vs. traditional solvers
Applications: Fluid dynamics, weather
Applications: Astrophysics, self-gravity in gas, GW, Lane-Emden, cosmology-sth
Challenges
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Motivation – Bridging Physics and ML

Traditional solvers: accurate but mesh- and timestep-heavy; struggle in high dimensions.
Pure ML: flexible but can violate physics and overfit/out-of-domain fail.
PINNs: embed governing equations (PDE/ODE) as soft constraints during training
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What Are PINNs? – Core Concept

Figure 1: Cuomo et al. (2022)
Marek Cieślar (OAUW) PINNs October 15, 2025 4 / 29



How PINNs Are Trained

1 Define NN: inputs (coords/params), outputs (field(s)).
2 Form composite loss: L = LD + LF + LB.
3 Sample collocation points; compute residuals with AutoDiff.
4 Optimize (Adam → L-BFGS); monitor residuals/BCs
5 Enforce BCs softly (penalty) or hard (by design); validate.
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Example: Pendulum - ML

Figure 2: MathWorks: PINNs
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https://uk.mathworks.com/discovery/physics-informed-neural-networks.html


Example: a damped pendulum - ML solution

Figure 3: MathWorks: PINNs
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Example: a damped pendulum - PINN

Figure 4: MathWorks: PINNs
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Example: a damped pendulum - PINN solution

Figure 5: MathWorks: PINNs
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Why PINNs? – Key Advantages

Mesh-free and flexible; continuous solutions over domain.
Physics-consistent; integrates sparse data.
Unified forward and inverse framework.
Often scales better in higher dimensions; substituting modeling.
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Trade-off: ML vs. Numerical Methods vs. PINNs

Figure 6: MathWorks: PINNs
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Trade-off: ML vs. Numerical Methods vs. PINNs

Figure 7: Ren et al. (2025)
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Navier–Stokes (incompressible)
Governing PDEs (vector form):

∂u
∂t + (u ·∇)u = −1

ρ
∇p + ν∇2u + f , ∇·u = 0,

where u(x, t) is velocity, p(x, t) pressure, ρ density (const.), ν kinematic viscosity, f body force.

Non-dimensional form: with characteristic (U, L),

∂u∗
∂t∗ + (u∗ ·∇∗)u∗ = −∇∗p∗ + 1

Re ∇
∗2u∗ + f ∗, ∇∗ ·u∗ = 0,

with Reynolds number Re = UL
ν

. where ν is the kinematic viscosity of the fluid (m2/s). U
Characteristic velocity scale — representative flow speed. L Characteristic length scale — representative
geometric dimension.

Low Re (. 103): viscous-dominated, laminar, smooth flow.
High Re (& 104): inertia-dominated, turbulent or unsteady flow.
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Key Take-Aways: Raissi et al. (2020)
Goal:

Introduced Hidden Fluid Mechanics (HFM): a PINN-based framework that extracts hidden
velocity and pressure fields from observations of a passive scalar (e.g. dye or smoke) under
advection–diffusion + Navier–Stokes constraints.

The method encodes the NS + transport PDEs into the network’s loss, rather than learning from
direct velocity/pressure labels.

It is agnostic to geometry, boundary conditions, or initial conditions in its domain of interest —
flexible in domain selection.

Demonstrated Capabilities:

Successfully recovered velocity and pressure from sparse/noisy scalar concentration observations,
even in irregular domains.

Showed resilience to low resolution and significant noise in data, indicating practical utility in
experimental settings.
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Raissi et al. (2020)

Figure 8: Flow around obstacle: PINN-reconstructed pressure/velocity from sparse tracer observations.
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Weather Forecasting/Simulation - PINNs Review Kashinath et al. (2021)

Positive/negative side of PINNs:

forward (solving PDEs) and inverse / discovery (parameter estimation, PDE learning) applications
under one umbrella.

gradient pathologies: imbalance between data loss and PDE residual loss can lead to poor
convergence.

Applications and impact:

PINNs applied across diverse domains: fluid mechanics, heat conduction, wave equations, inverse
problems.

Ability of PINNs to handle multiphysics, multi-scale, and parameterized PDEs with fewer data and
mesh constraints.
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Kashinath et al. (2021)

Figure 9: Images of the LR input, high-resolution ground truth (HR), and generated SR outputs from
PSD-Net, ESRGAN, SRCNN and bicubic upsampling. Although ESRGAN performs poorly on PSNR,
MSE and MAE, the generated images reveal that both PSD-Net and ESRGAN produce sharper images
that have more realistic small-scale features and are less prone to artefacts.
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Self-gracity in fluids: GRINN Auddy et al. (2023)

Problem:

GRINN is a PINN designed for self-gravitating hydrodynamics, coupling fluid dynamics and gravity
(Poisson equation) in a mesh-free framework.

Targets simulation of gravitational instability and wave propagation in isothermal gas, across 1D,
2D, and 3D settings.

Performance:

In the linear regime, GRINN matches analytic solutions to within ' 1% error; in the nonlinear
regime, it stays within ' 5% compared to conventional grid codes.

Demonstrated favorable scaling: in 3D, GRINN’s runtime is orders of magnitude lower than a
comparable finite difference code for similar accuracy.

In lower dimensions (1D, 2D), GRINN is slower than conventional codes, but its performance
advantage kicks in as dimensionality increases.
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Auddy et al. (2023)

Figure 10: Top: GRINN
density solutions for a 3D
self-gravitating hydrodynamic
system (three distinct cases).
Bottom: The relative
mismatch between the GRINN
and standard FD (Finite
Difference numerical method)
solutions.
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Astrophysics: Gravitational Waves from Kerr BH Luna et al. (2023)

Teukolsky-PINN: able to compute Kerr black hole quasinormal modes (QNMs) with
. 1% error vs. spectral benchmarks.
Potential for fast parameter estimation in gravitational-wave pipelines.

What are QNMs?
After a perturbation, a black hole rings down by emitting gravitational waves that damp
with time.
These are described by complex frequencies ω = ωR + i ωI , where ωR is oscillation
frequency, and ωI < 0 is a decay (damping) rate.
QNMs satisfy boundary conditions: purely ingoing at the event horizon, and purely
outgoing at spatial infinity.
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Luna et al. (2023)
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Lane–Emden Equation and Polytropic Stars

Models a self-gravitating, spherically symmetric polytropic fluid (P = Kρ1+ 1
n ) in hydrostatic

equilibrium. The dimensionless form of the equation:

1
ξ2

d
dξ

(
ξ2

dθ
dξ

)
+ θn = 0,

with
ρ = ρc θ

n, P = Kρ1+1/n
c θn+1

where: ξ = r/α is the dimensionless radius, θ(ξ) is the dimensionless density (normalized so θ(0) = 1.
With the boundary conditions:

θ(0) = 1, θ′(0) = 0.
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Astrophysics: Stellar Structure (Lane–Emden) Mohuţ and Popa (2025).

Insights:

Radial coordinate and polytropic index as inputs to the PINN.

The models not only fit the training indices n, but also extrapolate to unseen polytropic indices
with high accuracy.

Studies on width and depth: best performance often arises in moderate network complexity (e.g.
2–3 residual blocks with 64–256 hidden units) rather than extreme size.

Embedding the parameter n as input lets a single PINN represent a family of ODEs, avoiding
retraining for each index.

Architectural design (residuals, gating, Fourier features) matters significantly for stability and
representation of different regimes.
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Mohuţ and Popa (2025).
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Cosmology-informed PINNs Verma et al. (2025).

Goal:

To train a PINN surrogate to learn the normalized dark energy density xde(z ; θ), taking redshift z
and dark energy EoS parameters θ = (w0,wa) as inputs .

To embedd directly into a MCMC likelihood pipeline using Pantheon+ supernova data to infer
cosmological parameters.

Results:

The surrogate reproduces the Hubble expansion E (z) with sub-percent errors over most of the
parameter–redshift domain (edges a bit worse).

Distance modulus bias introduced by the surrogate remains below 0.1 magnitudes even up to
z ∼ 2.5, which is within the observational scatter of supernova data.

Compared to direct ODE integration inside an MCMC, the surrogate becomes advantageous after
about 4 independent runs (i.e. the break-even point of training cost vs repeated evaluations).
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Figure 11: Mental health unit at the Royal Hospital in Edinburgh.
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Limitations of PINNs

Limited convergence theory
I Theoretical guarantees for convergence of PINNs are still underdeveloped compared to

classical numerical methods.
Lack of unified training strategies

I Training approaches (e.g., loss balancing, domain sampling) are often ad hoc and not
standardized.

Computational cost of calculating high-order derivatives
I Automatic differentiation, while precise, becomes expensive and memory-intensive for

high-order PDEs.
Difficulty learning high-frequency and multiscale components of PDE solutions

I PINNs often struggle to represent sharp gradients or fine-scale oscillations due to the
smoothness bias of neural networks.
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Frameworks for Physics-Informed Learning

PhysicsNeMo — NVIDIA’s open-source framework for scalable physics-AI models. Supports
PINNs, neural operators, GNNs, and hybrid architectures; provides APIs to encode PDE
constraints, geometry, and distributed training. (large-scale industry-style modelling)

DeepXDE — A Python library for scientific ML and physics-informed learning (Lu et al. (2021)).
Implements PINN, inverse PDE, fractional PDEs, operator learning; supports adaptive sampling,
hard constraints, complex geometries. (Academic research)

Both frameworks provide all necessary building blocks (loss functions, domain management, autodiff, sampling strategies).
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