Physics-Informed Neural Networks (PINNs) Bridging Physics and Deep Learning for ODE/PDE Problems

Marek Cieślar

Astronomical Observatory, University of Warsaw

October 15, 2025

Overview

- Motivation: Why Physics-Informed ML?
- What are PINNs?
- Advantages vs. traditional solvers
- Applications: Fluid dynamics, weather
- Applications: Astrophysics, self-gravity in gas, GW, Lane-Emden, cosmology-sth
- Challenges

Motivation – Bridging Physics and ML

- Traditional solvers: accurate but mesh- and timestep-heavy; struggle in high dimensions.
- Pure ML: flexible but can violate physics and overfit/out-of-domain fail.
- PINNs: embed governing equations (PDE/ODE) as soft constraints during training

What Are PINNs? - Core Concept

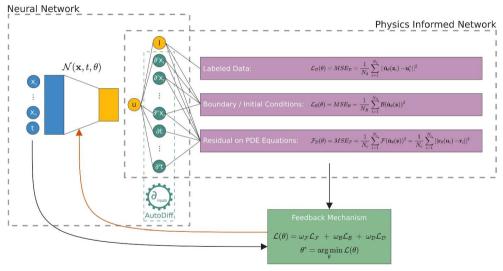


Figure 1: Cuomo et al. (2022)

Marek Cieślar (OAUW) PINNs October 15, 2025 4/29

How PINNs Are Trained

- ① Define NN: inputs (coords/params), outputs (field(s)).
- ② Form composite loss: $L = L_D + L_F + L_B$.
- Sample collocation points; compute residuals with AutoDiff.
- \bullet Optimize (Adam \to L-BFGS); monitor residuals/BCs
- Second Entropy Second Secon

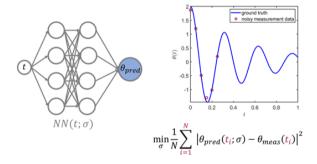


Figure 2: MathWorks: PINNs

Example: a damped pendulum - ML solution

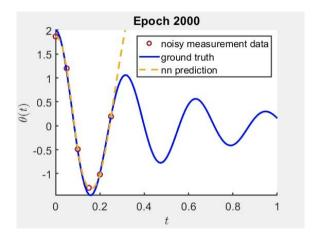


Figure 3: MathWorks: PINNs

Example: a damped pendulum - PINN

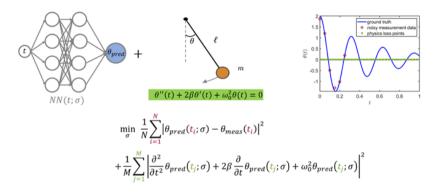


Figure 4: MathWorks: PINNs

Example: a damped pendulum - PINN solution

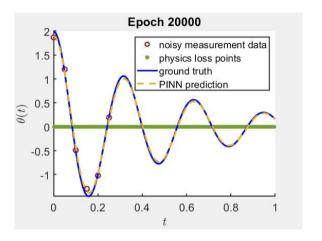


Figure 5: MathWorks: PINNs

Why PINNs? – Key Advantages

- Mesh-free and flexible; continuous solutions over domain.
- Physics-consistent; integrates sparse data.
- Unified forward and inverse framework.
- Often scales better in higher dimensions; substituting modeling.

Trade-off: ML vs. Numerical Methods vs. PINNs

	Purely Data-Driven Approaches	Traditional Numerical Methods	PINNs
Incorporate known physics	×	✓	~
Generalize well with limited or noisy training data	×	×	~
Solve forward and inverse problems simultaneously	~	×	~
Solve high-dimensional PDEs	×	×	~
Enable fast "online" prediction	✓	×	~
Are mesh-free	✓	×	~
Have well-understood convergence theory	×	~	×
Scale well to high-frequency and multiscale PDEs	×	~	×

Figure 6: MathWorks: PINNs

Trade-off: ML vs. Numerical Methods vs. PINNs

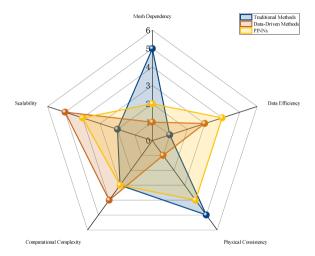


Figure 7: Ren et al. (2025)

Navier-Stokes (incompressible)

Governing PDEs (vector form):

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} = -\frac{1}{\rho} \nabla \rho + \nu \nabla^2 \boldsymbol{u} + \boldsymbol{f}, \qquad \nabla \cdot \boldsymbol{u} = 0,$$

where u(x,t) is velocity, p(x,t) pressure, ρ density (const.), ν kinematic viscosity, f body force.

Non-dimensional form: with characteristic (U, L),

$$\frac{\partial \boldsymbol{u}^*}{\partial t^*} + (\boldsymbol{u}^* \cdot \nabla^*) \boldsymbol{u}^* = -\nabla^* \rho^* + \frac{1}{\text{Re}} \nabla^{*2} \boldsymbol{u}^* + \boldsymbol{f}^*, \qquad \nabla^* \cdot \boldsymbol{u}^* = 0,$$

with Reynolds number $\mathrm{Re} = \frac{UL}{\nu}$. where ν is the kinematic viscosity of the fluid (m²/s). U Characteristic velocity scale — representative flow speed. L Characteristic length scale — representative geometric dimension.

- Low Re ($\leq 10^3$): viscous-dominated, laminar, smooth flow.
- High Re ($\gtrsim 10^4$): inertia-dominated, turbulent or unsteady flow.

13 / 29

Key Take-Aways: Raissi et al. (2020)

Goal:

- Introduced *Hidden Fluid Mechanics (HFM)*: a PINN-based framework that extracts hidden velocity and pressure fields from observations of a passive scalar (e.g. dye or smoke) under advection–diffusion + Navier–Stokes constraints.
- The method encodes the NS + transport PDEs into the network's loss, rather than learning from direct velocity/pressure labels.
- It is agnostic to geometry, boundary conditions, or initial conditions in its domain of interest flexible in domain selection.

Demonstrated Capabilities:

- Successfully recovered velocity and pressure from sparse/noisy scalar concentration observations, even in irregular domains.
- Showed resilience to low resolution and significant noise in data, indicating practical utility in experimental settings.

 Marek Cieślar (OAUW)
 PINNs
 October 15, 2025
 14/29

Raissi et al. (2020)

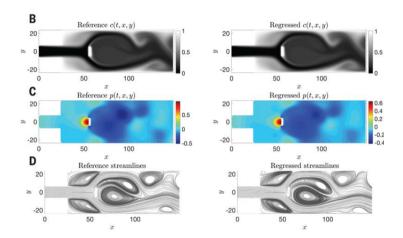


Figure 8: Flow around obstacle: PINN-reconstructed pressure/velocity from sparse tracer observations.

Weather Forecasting/Simulation - PINNs Review Kashinath et al. (2021)

Positive/negative side of PINNs:

- forward (solving PDEs) and inverse / discovery (parameter estimation, PDE learning) applications under one umbrella.
- gradient pathologies: imbalance between data loss and PDE residual loss can lead to poor convergence.

Applications and impact:

- PINNs applied across diverse domains: fluid mechanics, heat conduction, wave equations, inverse problems.
- Ability of PINNs to handle multiphysics, multi-scale, and parameterized PDEs with fewer data and mesh constraints.

Kashinath et al. (2021)

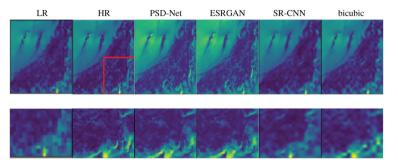


Figure 9: Images of the LR input, high-resolution ground truth (HR), and generated SR outputs from PSD-Net, ESRGAN, SRCNN and bicubic upsampling. Although ESRGAN performs poorly on PSNR, MSE and MAE, the generated images reveal that both PSD-Net and ESRGAN produce sharper images that have more realistic small-scale features and are less prone to artefacts.

Self-gracity in fluids: GRINN Auddy et al. (2023)

Problem:

- GRINN is a PINN designed for *self-gravitating hydrodynamics*, coupling fluid dynamics and gravity (Poisson equation) in a mesh-free framework.
- Targets simulation of gravitational instability and wave propagation in isothermal gas, across 1D, 2D, and 3D settings.

Performance:

- In the linear regime, GRINN matches analytic solutions to within $\simeq 1\%$ error; in the nonlinear regime, it stays within $\simeq 5\%$ compared to conventional grid codes.
- Demonstrated favorable scaling: in 3D, GRINN's runtime is *orders of magnitude lower* than a comparable finite difference code for similar accuracy.
- In lower dimensions (1D, 2D), GRINN is slower than conventional codes, but its performance advantage kicks in as dimensionality increases.

Auddy et al. (2023)

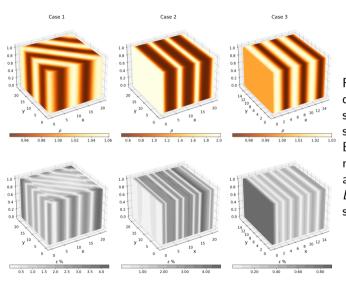


Figure 10: Top: GRINN density solutions for a 3D self-gravitating hydrodynamic system (three distinct cases). Bottom: The relative mismatch between the GRINN and standard FD (*Finite Difference* numerical method) solutions.

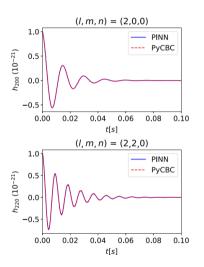
Astrophysics: Gravitational Waves from Kerr BH Luna et al. (2023)

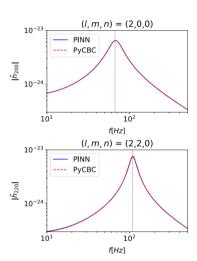
- \bullet Teukolsky-PINN: able to compute Kerr black hole quasinormal modes (QNMs) with $\lesssim 1\%$ error vs. spectral benchmarks.
- Potential for fast parameter estimation in gravitational-wave pipelines.

What are QNMs?

- After a perturbation, a black hole rings down by emitting gravitational waves that damp with time.
- These are described by complex frequencies $\omega = \omega_R + i \, \omega_I$, where ω_R is oscillation frequency, and $\omega_I < 0$ is a decay (damping) rate.
- QNMs satisfy *boundary conditions*: purely ingoing at the event horizon, and purely outgoing at spatial infinity.

Luna et al. (2023)





Lane-Emden Equation and Polytropic Stars

Models a self-gravitating, spherically symmetric polytropic fluid $(P = K\rho^{1+\frac{1}{n}})$ in hydrostatic equilibrium. The *dimensionless form* of the equation:

$$\frac{1}{\xi^2}\frac{d}{d\xi}\left(\xi^2\frac{d\theta}{d\xi}\right) + \theta^n = 0,$$

with

$$\rho = \rho_c \, \theta^n$$
, $P = K \rho_c^{1+1/n} \, \theta^{n+1}$

where: $\xi = r/\alpha$ is the dimensionless radius, $\theta(\xi)$ is the dimensionless density (normalized so $\theta(0) = 1$. With the boundary conditions:

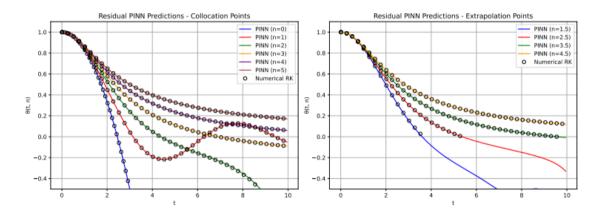
$$\theta(0) = 1, \quad \theta'(0) = 0.$$

Astrophysics: Stellar Structure (Lane–Emden) Mohuţ and Popa (2025).

Insights:

- Radial coordinate and polytropic index as inputs to the PINN.
- ullet The models not only fit the training indices n, but also extrapolate to unseen polytropic indices with high accuracy.
- Studies on width and depth: best performance often arises in moderate network complexity (e.g. 2–3 residual blocks with 64–256 hidden units) rather than extreme size.
- ullet Embedding the parameter n as input lets a single PINN represent a family of ODEs, avoiding retraining for each index.
- Architectural design (residuals, gating, Fourier features) matters significantly for stability and representation of different regimes.

Mohuţ and Popa (2025).



Cosmology-informed PINNs Verma et al. (2025).

Goal:

- To train a PINN surrogate to learn the normalized dark energy density $x_{\rm de}(z;\theta)$, taking redshift z and dark energy EoS parameters $\theta = (w_0, w_a)$ as inputs .
- To embedd directly into a MCMC likelihood pipeline using Pantheon+ supernova data to infer cosmological parameters.

Results:

- The surrogate reproduces the Hubble expansion E(z) with sub-percent errors over most of the parameter-redshift domain (edges a bit worse).
- Distance modulus bias introduced by the surrogate remains below 0.1 magnitudes even up to $z \sim 2.5$, which is within the observational scatter of supernova data.
- Compared to direct ODE integration inside an MCMC, the surrogate becomes advantageous after about 4 independent runs (i.e. the break-even point of training cost vs repeated evaluations).

PINNs Marek Cieślar (OAUW) October 15, 2025 25 / 29

Figure 11: Mental health unit at the Royal Hospital in Edinburgh.

Limitations of PINNs

- Limited convergence theory
 - ► Theoretical guarantees for convergence of PINNs are still underdeveloped compared to classical numerical methods.
- Lack of unified training strategies
 - ► Training approaches (e.g., loss balancing, domain sampling) are often ad hoc and not standardized.
- Computational cost of calculating high-order derivatives
 - Automatic differentiation, while precise, becomes expensive and memory-intensive for high-order PDEs.
- Difficulty learning high-frequency and multiscale components of PDE solutions
 - ► PINNs often struggle to represent sharp gradients or fine-scale oscillations due to the smoothness bias of neural networks.

Frameworks for Physics-Informed Learning

- PhysicsNeMo NVIDIA's open-source framework for scalable physics-AI models. Supports
 PINNs, neural operators, GNNs, and hybrid architectures; provides APIs to encode PDE
 constraints, geometry, and distributed training. (large-scale industry-style modelling)
- DeepXDE A Python library for scientific ML and physics-informed learning (Lu et al. (2021)).
 Implements PINN, inverse PDE, fractional PDEs, operator learning; supports adaptive sampling, hard constraints, complex geometries. (Academic research)

Both frameworks provide all necessary building blocks (loss functions, domain management, autodiff, sampling strategies).

References

- S. Auddy, R. Dey, N. J. Turner, and S. Basu. Grinn: A physics-informed neural network for self-gravitating hydrodynamic systems. arXiv preprint arXiv:2308.08010, 2023. URL https://arxiv.org/abs/2308.08010.
- S. Cuomo, V. Schiano Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli. Scientific machine learning through physics-informed neural networks: Where we are and what's next. Journal of Scientific Computing, 92(3):88, 2022. doi: 10.1007/s10915-022-01939-z. URL https://doi.org/10.1007/s10915-022-01939-z.
- K. Kashinath, M. Mustafa, A. Albert, J.-L. Wu, C. Jiang, S. Esmaeilzadeh, K. Azizzadenesheli, R. Wang, A. Chattopadhyay, A. Singh, A. Manepalli, D. Chirila, R. Yu, R. Walters, B. White, H. Xiao, H. A. Tchelepi, P. Marcus, A. Anandkumar, P. Hassanzadeh, and n. Prabhat. Physics-informed machine learning: case studies for weather and climate modelling. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 379(2194): 202000093, 2021. doi: 10.1098/rsta.2020.0093. URL https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2020.0093.
- L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. Deepxde: A deep learning library for solving differential equations. SIAM Review, 63(1):208–228, 2021. doi: 10.1137/19M1274067.
- R. Luna, E. Cruz-Osorio, B. Bonga, H. Olivares, Z. Younsi, et al. Solving the teukolsky equation with physics-informed neural networks. *Physical Review D*, 107 (6):064025, 2023. doi: 10.1103/PhysRevD.107.064025.
- A.-l. Mohuţ and C.-A. Popa. Generalization-capable pinns for the lane-emden equation: Residual and stellarnet approaches. Applied Sciences, 15(18):10035, 2025. doi: 10.3390/app151810035.
- M. Raissi, A. Yazdani, and G. E. Karniadakis. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. *Science*, 367(6481): 1026–1030, 2020. doi: 10.1126/science.aaw4741.
- Z. Ren, S. Zhou, D. Liu, and Q. Liu. Physics-informed neural networks: A review of methodological evolution, theoretical foundations, and interdisciplinary frontiers. Applied Sciences, 15(14):8092, 2025. doi: 10.3390/app15148092.
- A. Verma, J. Doe, and R. Smith. Cosmology-informed neural networks to infer dark energy equation-of-state. arXiv preprint arXiv:2508.12032, 2025. URL https://arxiv.org/abs/2508.12032. Preprint.

 Marek Cieślar (OAUW)
 PINNs
 October 15, 2025
 29 / 29