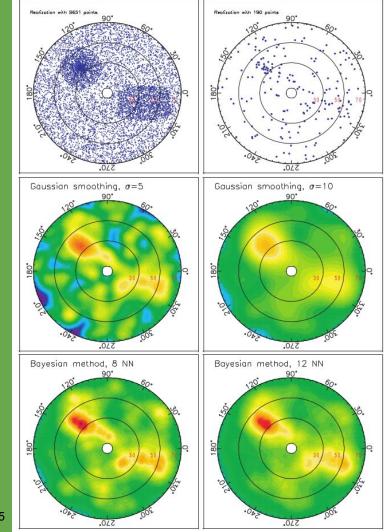
"On Estimating Non-Uniform Density Distributions Using Non-Uniform Non-Uniform

Radek Poleski 29 Oct 2025

What problem is discussed?

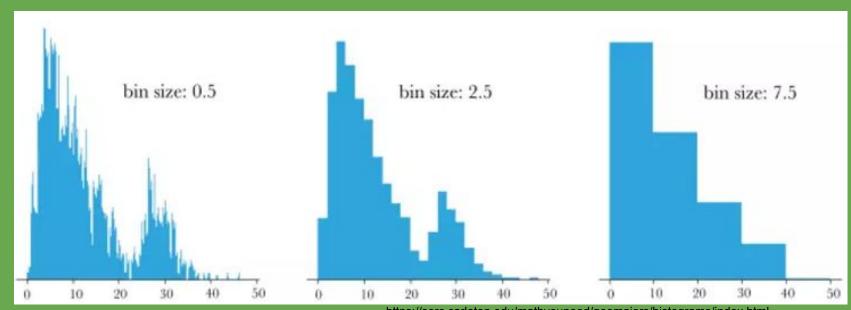
- Spatial studies of distributions of objects:
 RR Lyr, galaxies, GRBs, stars in globular clusters, finding star clusters...
- Simulations
- Color-magnitude diagrams of globular clusters



Solution 1 - binning

Obvious issues with bin size and phase.

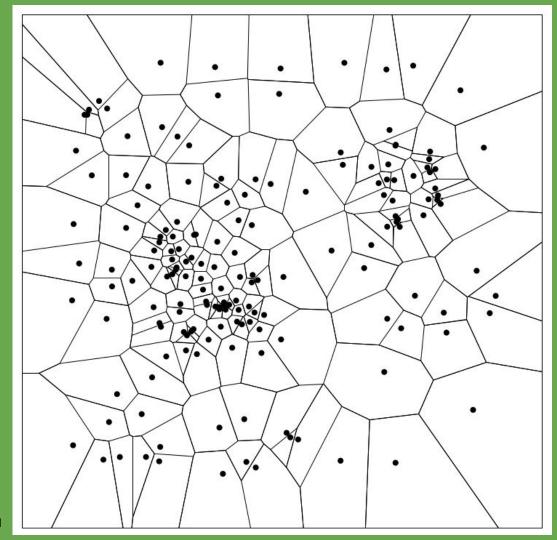
See SJC on 14 Dec. 2021 by P. Szewczyk



https://serc.carleton.edu/mathyouneed/geomajors/histograms/index.html

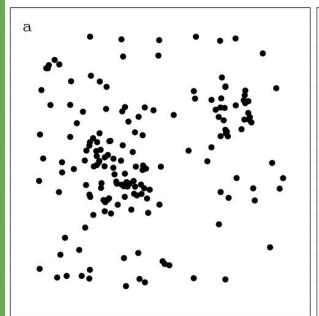
Solution 2 - Voronoi tessellation

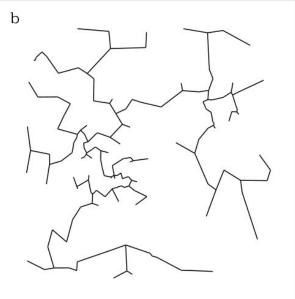
Very sensitive to small-scale fluctuations -> smoothing

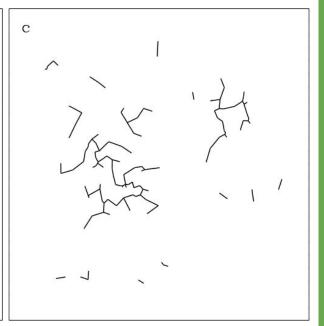


Solution 3 - minimum spanning tree separation

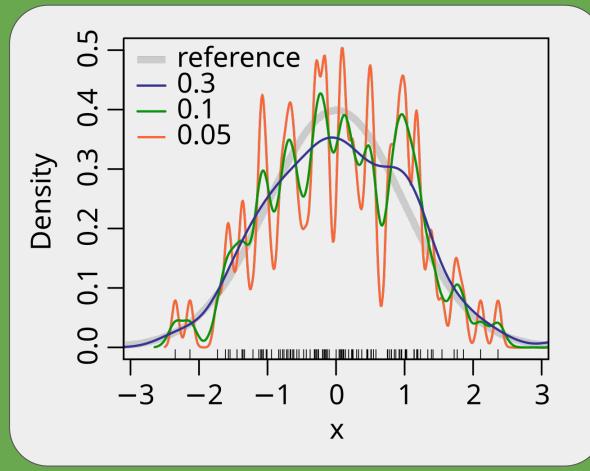
MST is the unique set of straight lines ("edges") connecting a given set of points ("vortices") without closed loops, such that the sum of the edge lengths is minimum.







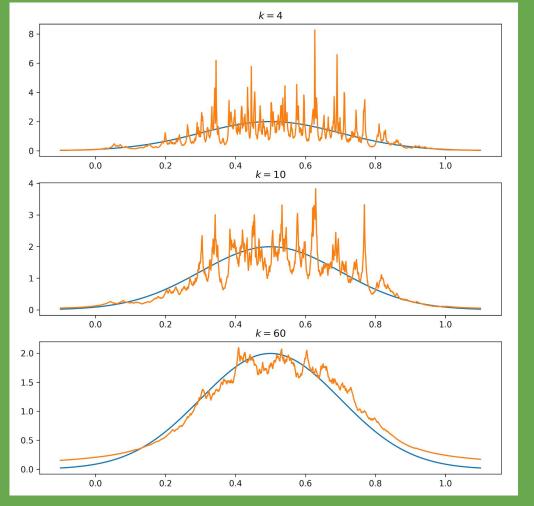
Solution 4 - kernel density estimation



Solution 5 - nearest neighbour density

Depends only on a single parameter.

Slow, but faster than MST.



https://math.stackexchange.com/questions/4028633/which-is-the-algorithm-for-knn-density-estimator

5a - Bayesian approach to Nearest Neighbours

Ivezić et al. 2005

$$p(n_0|\{d_k; k=1, N\}, I)$$

$$\propto p(d_N|n_0; I)p(n_0|\{d_k; k=1, N-1\}, I), \quad (B2)$$

$$p(n_0|\{d_k; k=1,N\},I) \propto p(n_0|I) \prod_{k=1}^{N} p(d_k|n_0,I).$$
 (B3)

$$p(k|\mu) = \frac{\mu^k e^{-\mu}}{k!}.$$
 (B4)

The number of expected points, $\mu = n_0 V_D(d)$, can be conveniently parametrized as $(d/d_0)^D$, where d_0 is the characteristic (mean) distance between two points [determined from $n_0 V_D(d_0) = 1$]. The probability that the distance to the kth neighbor is between d and $d + \delta d$ is the same as the probability that there are exactly k - 1 neighbors enclosed by d and follows from equation (B4). (For a treatment of non-Poisson distributions, see White 1979.) With the change of variables from μ to d, the probability density distribution for the distance to the kth nearest neighbor becomes

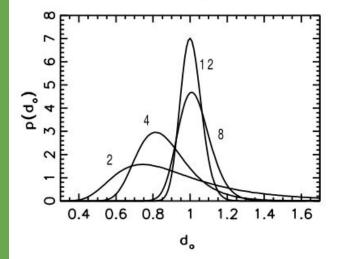
$$p(d_k|d_0) = \frac{De^{-(d_k/d_0)^D}}{d_0(k-1)!} \left(\frac{d_k}{d_0}\right)^{Dk-1}.$$
 (B5)

In the two-dimensional case adopted here to analyze the distribution of candidate RR Lyrae stars (because the SDSS Data Release 1 footprint consists of two elongated strips; see Fig. 5), the probability density distribution for d_0 , which is related to the local density via $n_0 = \pi d_0^2$, is thus determined from⁹

$$p(d_0|\{d_k; k=1, N\}) \propto \prod_{k=1}^{N} \frac{2e^{-(d_k/d_0)^2}}{d_0(k-1)!} \left(\frac{d_k}{d_0}\right)^{2k-1}.$$
 (

A few steps in a typical realization of this computation are shown in the middle panel in Fig. 9, where $p(d_0)$ is evaluated for N = 2, 4, 8, and 12, for a random sample with true $d_0 = 1$.

5a - Bayesian approach to Nearest Neighbours



⁹ Eq. (B6) can be recast in a form that allows much simplified computation of the expectation value for the local density and its uncertainty (such that the dependences on d_k and d_0 are separated and the final expressions involve only a summation of d_k^D , without a need to evaluate the full posterior probability distribution [P. Wozniak 2004, private communication].

5a - Bayesian approach to Nearest Neighbours

Comments by Woźniak & Kruszewski 2012:

Another way of diminishing the smoothing bias was introduced by Ivezić *et al.* (2005) and Cowan and Ivezić (2008) who take a "Bayesian" approach to combine contributions from all *N* nearest neighbors. The net effect is, again, lower bias at the cost of increased variance. Here we propose a new method of dealing with the smoothing bias that captures the information on density variations contained in distances to all *N* nearest neighbors using the Legendre series expansion.

5b - use normalised volumes and Legendre polynomials

$$\hat{\rho}_{N,k} = \frac{1}{v_N} \sum_{i=1}^{N-1} \sum_{l=0}^{k} (-1)^l (2l+1) P_l (2y_i - 1)$$

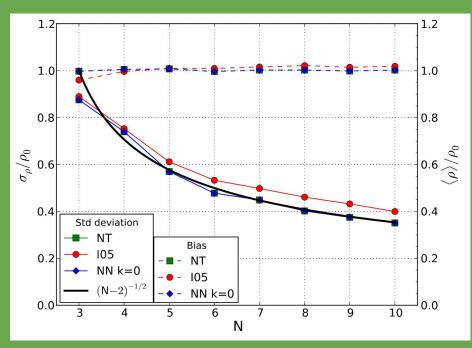
Woźniak & Kruszewski 2012 (though the formula was known years earlier)

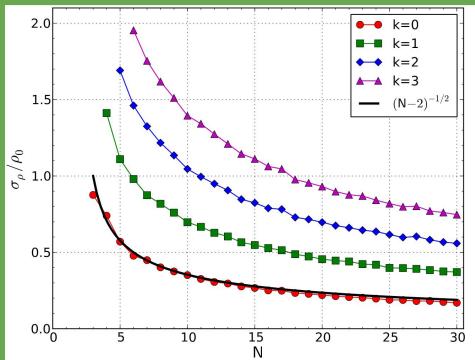
Authenticated portrait of Legendre[2]

Portrait based on an anonymous and undated sketch, allegedly given by Legendre to François Arago in 1829, according to Arago's son.



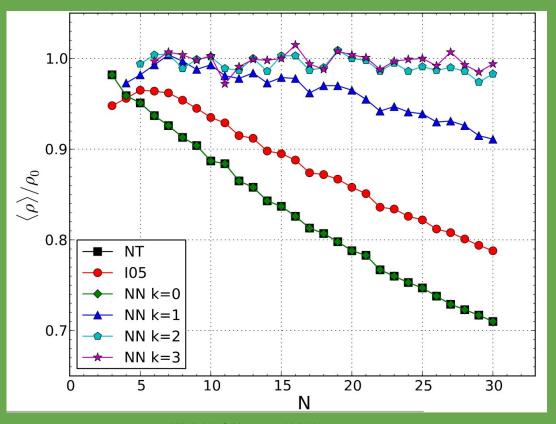
5b - use normalised volumes and Legendre polynomials



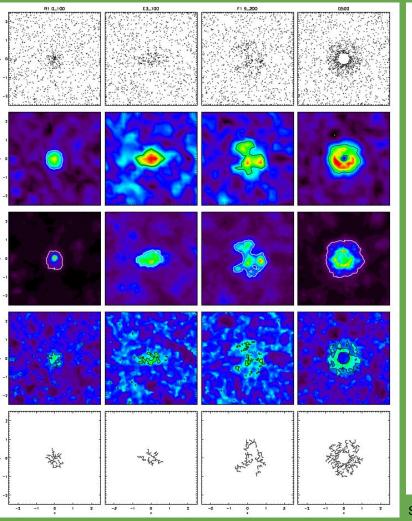


Woźniak & Kruszewski 2012

5b - use normalised volumes and Legandre polynomials



Woźniak & Kruszewski 2012



Model	SC	NN	VT	sVT	MST
R0.1_50	-	-	-	-	-
R0.1_100	0	0	1-	_	-
R0.1_200	0	0	-	0	0
R0.1_500	•	•	0	•	•
R1.0_50	0	•	-	0	0
R1.0_100	•	•	0	0	•
R1.0_200	•	•	0	•	•
R1.5_50	•	•	•	•	•
R1.5_100	•	•	•	•	•
R1.5_200	•	•	•	•	•
E2_50	_	0	_	_	_
E2_100	0	•	_	-	0
E2_200	•	•	0	0	0
E3_50	0	0		_	0
E3_100	•	•	-	_	0
E3_200	•	•	0	0	•
F1.9_100	0	0	: :	-	0
F1.9_200	0	•	_	0	0
F1.9_500	•	•	0	0	0
D100	0	0		-	_
D200	0	0	_	_	0
D500	•	•	0	0	0

Schmeja 2011