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Zjawiska Przejściowe – Transients

Czym są?
Są to krótkotrwałe zjawiska przejściowe – najczęściej pojaśnie-
nie obiektu astronomicznego, trwające od ułamków sekundy do
tygodni, a nawet lat. Zazwyczaj są to ekstremalne, krótkotrwałe
zdarzenia związane z całkowitym lub częściowym zniszczeniem
obiektu astronomicznego.

Supernowe
Błyski gamma
Kilonowe
Rozerwania pływowe gwiazd
Szybkie błyski radiowe
AGN
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Serwisy

Źródła informacji
Transient Name Server – https://www.wis-tns.org/
Astronomer’s Telegeam (ATel) –
https://astronomerstelegram.org/
GCN Circulars
Wiserep – https://www.wiserep.org/
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Supernowe

Gwiazdy supernowe - czym są?
Supernowe są to krótkotrwałe zjawiska przejściowe, wybuchowe
– transienty – na końcowych etapach życia gwiazdy. Supernowe
są bardzo jasne (absolutnie) i często przyćmiewają nawet własną
galaktykę macierzystą.
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Supernowe

SN 1994D (Typ Ia, M = −19.5 mag) w gal. NGC 4562 (M = −19.5 mag)
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Supernowe

SN 2011fe (Typ Ia, M = −19.5 mag) w gal. M101 (M = −21.0 mag)
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Supernowe

SN 2024ggi (Typ II, M ≈ −18.0 mag) w gal. NGC 3621 (M = −19.8 mag)
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Supernowe

Podział supernowych – widma
I typu – brak linii wodoru
Ib – obecne linie helu
Ic – brak linii helu
II typu – obecne linie wodoru

Podział supernowych – fizyka
typ Ia typ – fuzja jądrowa
typ Ib, Ic, II – zapadanie jądra gwiazdy

Podział supernowych – kształt
typ IIL – spadek liniowy
typ IIP – wypłaszenie (plateau)
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Widma supernowych
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Klasyfikacja supernowych

Szymon Kozłowski Astronomia Pozagalaktyczna



Ewolucja gwiazdy typu słonecznego (M < 8M⊙) - białe
karły
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Ewolucja gwiazdy typu słonecznego (M < 8M⊙) - białe
karły
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Supernowe typu Ia

Biały karzeł
Biały karzeł powstaje z gwiazdy o małej masie (poniżej ∼8 M⊙),
gdy kończy ona swoje życie.

Jeśli czerwony olbrzym ma niewystarczającą masę aby wytwo-
rzyć temperaturę w jądrze wymaganą do zapoczątkowania reak-
cji termojądrowych z użyciem węgla (około 1 miliard K), w jego
centrum zgromadzi się węgiel i tlen. Gdy taka gwiazda odrzuci
swoje zewnętrzne warstwy i utworzy mgławicę planetarną, pozo-
stawi po sobie jądro, które jest białym karłem. Białe karły są
pozostałościami gwiazd, a ich zapadanie powstrzymywane jest
przez ciśnienie zdegenerowanych elektronów.
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Supernowe typu Ia

Scenariusze powstawania supernowych Ia
Istnieją dwa możliwe scenariusze stworzenia supernowej typu Ia,
znane jako: z jednym obiektem zdegenerowanym (single degene-
rate scenario) oraz z dwoma obiektami zdegenerowanymi (double
degenerate scenario).

W scenariuszu z jednym obiektem zdegenerowanym gwiazda to-
warzysz białego karła powoli traci masę na rzecz białego karła,
aż do jego eksplozji (po przekroczeniu granicy Chandrasekhara;
1,44 M⊙).

W scenariuszu z dwoma obiektami zdegenerowanymi, układ
składa się z dwóch białych karłów, które ostatecznie łączą się, wy-
wołując eksplozję. Obserwacje wskazują, że zdecydowana więk-
szość SNe Ia pochodzi ze scenariusza z dwoma obiektami zdege-
nerowanymi (projekt ASAS-SN).
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Supernowe typu Ia – pojedynczy biały karzeł

(single degenerate scenario)

Szymon Kozłowski Astronomia Pozagalaktyczna



Supernowe typu Ia – pojedynczy biały karzeł

(single degenerate scenario)

Szymon Kozłowski Astronomia Pozagalaktyczna



Supernowe typu Ia – podwójny biały karzeł

(double degenerate scenario)
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Supernowe typu Ia

Wybuch supernowej Ia
W trakcie wybuchu supernowej Ia dochodzi do wybuchowej reak-
cji jądrowej w białym karle – reakcja “palenie węgla” (C + C →
O, Mg, Ne, ...) trwa kilka sekund. Gwiazda zostaje rozerwana.
Emisja energii 1051 erg.

W maksimum, widma optyczne SN Ia zawierają neutralne i po-
jedynczo zjonizowane linie Si, Ca, Mg, S i O co wskazuje, że ze-
wnętrzne warstwy wyrzutu składają się głównie z pierwiastków
o masie pośredniej.
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Supernowe typu Ia

Wybuch supernowej Ia
Po eksplozji, kiedy zewnętrzne warstwy rozszerzą się do mo-
mentu, w którym materia stanie się przezroczysta, w widmie do-
minuje światło emitowane przez pierwiastki syntetyzowane pod-
czas eksplozji – przede wszystkim izotopy zbliżone do masy że-
laza. W wyniku radioaktywnego rozpadu niklu-56 przez kobalt-56
do żelaza-56 powstają fotony o wysokiej energii (gamma), które
dominują w energii wytwarzanej przez wyrzut w okresach pośred-
nich i późnych. Fotony gamma oświetlają wyrzuconą wcześniej
materię powodując jej świecenie.
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Supernowe typu Ia

SN Ia

Szymon Kozłowski Astronomia Pozagalaktyczna



Supernowe typu Ia

SN Ia, OGLE
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Supernowe Ia
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Supernowe Ia

Mmax(B) = −21.7 + 2.7 × ∆m15(B) (1)
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Masywne gwiazdy → Core-collapse SNe
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Supernowe Core-Collapse (CC SNe)
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Supernowe Ib, Ic, II - zapadanie jądra (core-collapse)

Scenariusze powstawania supernowych Ib, Ic, II
Masywne gwiazdy (o masie większej niż około 8M⊙) zakoń-
czą swoje życie jako supernowe poprzez zapadnięcie się jądra
gwiazdy (core-collapse, CC SNe). Supernowa pojawia się, gdy
jądro gwiazdy składa się już głównie z żelaza i nie może już wy-
twarzać energii w wyniku syntezy jądrowej.

Gdy żelazne jądro osiągnie masę 1.2-1.4 M⊙, temperatura i
gęstość są tak duże, że zachodzą dwa procesy “pochłaniające
energię”.

Foto-dezintegracja
Wysokoenergetyczne fotony rozbijają jądra żelaza na jądra helu,
protony i neutrony. W wyniku spadku liczby fotonów zmniejsza
się ciśnienie i jądro zapada się.
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Supernowe Ib, Ic, II - zapadanie jądra (core-collapse)

Neutronizacja materii
Protony i elektrony łączą się w neutrony i neutrina. Neutrina
nie oddziaływują z materią, więc unoszą energię na zewnątrz
gwiazdy, a to przyspiesza zapadanie jądra.

Scenariusze powstawania supernowych Ib, Ic, II
Zarówno jądro, jak i zewnętrzne warstwy gwiazdy szybko się za-
padają z powodu braku wewnętrznego ciśnienia. Następnie jądro
zapada się tak długo, aż ciśnienie degeneracji neutronów przej-
muje kontrolę nad sytuacją i jądro nie może być dalej ściskane.
Gdy zewnętrzne warstwy uderzają w jądro, następnie “odbijają
się”, tworząc falę uderzeniową i uwalniając energię, którą postrze-
gamy jako supernową.
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Supernowe Ib, Ic, II - zapadanie jądra (core collapse,
CCSNe)

Scenariusze powstawania supernowych Ib, Ic, II
Istnieje kilka odmian supernowych ze scenariusza z zapadającym
się jądrem, związanych z właściwościami gwiazdy (zwanej proge-
nitorem). Progenitorzy supernowych typu II zachowują otoczkę
wodorową i dlatego w ich widmach widzimy silne linie wodoru.
Jednakże typy Ib i Ic nie wykazują linii H (brak otoczki wodoro-
wej w progenitorze). Różnica między Ib i Ic polega na obecności
linii helu, których nie widać w przypadku supernowych typu Ic.
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Supernowe Ib, Ic, II - zapadanie jądra (core collapse)

Scenariusze powstawania supernowych Ib, Ic, II
W zależności od masy gwiazdy jądro pozostanie w postaci kuli
neutronów (gwiazdy neutronowa) lub zostanie jeszcze bardziej
ściśnięte przez falę uderzeniową, tworząc czarną dziurę. Badania
CCSNe są ważne nie tylko w celu zrozumienia końcowych stadiów
masywnych gwiazd, ale także powstawania zwartych obiektów,
takich jak gwiazdy neutronowe i czarne dziury.
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Jasności absolutne supernowych
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Ile supernowych?
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Ile supernowych?
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Błyski promieniowania gamma (GRB)
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Błyski promieniowania gamma (GRB)

Lata 1960-te
USA w latach 1963-1965 umieściło na orbicie 12 satelitów Vela,
celem obserwacji promieniowania gamma i rentgenowskiego po-
chodzącego z (zakazanych traktatami) testów wybuchów bomb
jądrowych.

Szybko okazało, że wiele błysków promieniowania gamma pocho-
dzi z kosmosu. Do roku 1973 były to informacje tajne.

Błyski promieniowania gamma stały się w tamtym czasie jedną
z najważniejszych zagadek do rozwiązania.
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Błyski promieniowania gamma (GRB)

BATSE
W 1991 roku NASA wysłała na orbitę satelitę Compton Gamma
Ray Observatory (CGRO) wyposażonego m.in. w instrument
BATSE (ang. Burst and Transient Source Experiment) przeszu-
kujący niebo w poszukiwaniu krótkich rozbłysków gamma.

W latach 1991–2000 odnotowano 2700 błysków gamma o długości
od 0,25 do 30 sekund, każdy to kilkaset-kilka tysięcy fotonów.

Jaki rozkład na niebie? Czy są to obiekty kosmologiczne czy ga-
laktyczne?
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Błyski promieniowania gamma (GRB)

Debata Paczyński-Lamb (lipiec 1995)
Bohdan Paczyński – obiekty kosmologiczne
Donald Lamb – obiekty galaktyczne
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Błyski promieniowania gamma (GRB)
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Błyski promieniowania gamma (GRB)

Czym one są?
Lokalizacja GRBs była słabo znana. W 1996 roku wystrzelono
satelitę Beppo SAX (działał do 2003 roku), który bardzo szybko
po wykryciu GRB mierzył pozycję rentgenowską.

W 1997 roku zlokalizowano poświatę rentgenowską błysku pro-
mieniowania gamma z galaktyką na redshifcie z = 0.835. Są to
zatem obiekty kosmologiczne!

W 1998 roku zidentyfikowano supernową w miejscu błysku
gamma.
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Błyski promieniowania gamma (GRB)

Czym one są?
Satelita Swift wystrzelony w 2004 roku, obsewujący promienio-
wanie gamma, rentgenowskie i UV. Po wykryciu błysku gamma
satelita namierzał pozycję w X i UV.
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Błyski promieniowania gamma (GRB)
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Błyski promieniowania gamma (GRB)

Czym one są?
Satelita Fermi wystrzelony w 2008 roku, obserwujący promienio-
wanie gamma o najwyższej energii.
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Błyski promieniowania gamma (GRB)

Powiązany z SN Ic (z = 0.34).
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Błyski promieniowania gamma (GRB)

Czym one są?
Promieniowanie gamma dociera do nas jako krótkie (<2s)
lub długie “impulsy”.
Szybki follow-up wskazuje na poświatę optyczną i/lub
rentgenowską.
Promieniowanie dociera do nas z odległości
kosmologicznych.
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Błyski promieniowania gamma (GRB)
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Błyski promieniowania gamma (GRB)

Błyski krótkie t < 2 s (30% próbki GRBs)
Są związane z obszarami o niewielkim lub zerowym tempie
formowania gwiazd, takimi jak duże galaktyki eliptyczne.
Wyklucza to powiązanie z masywnymi gwiazdami,
potwierdzając, że krótkie zdarzenia fizycznie różnią się od
długich.
Ponadto nie znaleziono żadnego związku z supernowymi.
Wiodąca hipoteza głosi, że krótkie GRB powstają one w
wyniku połączenia podwójnych gwiazd neutronowych lub
gwiazdy neutronowej z czarną dziurą (tj. zjawisko
kilonowej).
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Błyski promieniowania gamma (GRB)

Błyski krótkie t < 2 s (30% próbki GRBs)
Najpopularniejszym wyjaśnieniem ich pochodzenia to zderzenie
dwóch gwiazd zwartych: pary gwiazd neutronowych lub gwiazdy
neutronowej i czarnej dziury. Po takim zderzeniu, powstaje przej-
ściowa struktura, często hipermasywna gwiazda neutronowa,
która jest niestabilna i pod wpływem grawitacji tworzy czarną
dziurę. Otaczające ją resztki gęstej materii, pozostałej po zderze-
niu, tworzą dysk, a proces dyskowej akrecji, z udziałem pola ma-
gnetycznego, podobnie jak w przypadku długich błysków, umoż-
liwia uzyskanie energii rotacyjnej z czarnej dziury i wyrzut fali
uderzeniowej. Fala ta, w postaci skolimowanej strugi (dżetu) roz-
chodzi się w ośrodku międzygwiazdowym i emituje wysokoener-
getyczne promieniowanie gamma.
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Błyski promieniowania gamma (GRB)
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Błyski promieniowania gamma (GRB)

Błyski długie t > 2 s (70% próbki GRBs)
Prawie każdy dobrze zbadany długi rozbłysk gamma został
powiązany z galaktyką o dużym tempie formowania
gwiazd, a w wielu przypadkach także z supernową
core-collapse, co jednoznacznie łączy długie GRB ze
śmiercią masywnych gwiazd.
Hipernowe – wybuchy gwiazd najbardziej masywnych, o
masach kilkadziesiąt razy przekraczających M⊙. Jądro
gwiazdy zapada się bezpośrednio do stadium czarnej
dziury. Jeśli gwiazda ta szybko rotuje, to z okolic jej
biegunów, wzdłuż osi rotacji, wyrzucane są dwa
wysokoenergetyczne strumienie plazmy - dżety. Strumienie
te emitują intensywne promieniowanie gamma.
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Rozerwanie pływowe gwiazdy – Tidal Disruption Event
(TDE)
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Rozerwanie pływowe gwiazdy – Tidal Disruption Event
(TDE)

Promień pływowy
Rozerwanie pływowe gwiazdy (TDE) ma miejsce, gdy gwiazda
przechodzi “blisko” supermasywnej czarnej dziury (SMBH) i
zostaje rozerwana przez siły pływowe. Odległość, przy której
siła pływowa SMBH (Ft) równa się sile grawitacji gwiazdy (F∗),
nazywana jest promieniem pływowym Rt (t–tidal).

Ft = F∗ (2)
GMBHR∗

R3
t

= GM∗
R2

∗
(3)

Rt = R∗

(
MBH

M∗

) 1
3

(4)
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Rozerwanie pływowe gwiazdy – Tidal Disruption Event
(TDE)

Promień pływowy
Promień pływowy (Rt) zależy od masy M∗ i promienia gwiazdy
R∗ oraz od masy SMBH: Rt = R∗(MBH/M∗)1/3. W przypadku
gwiazd ciągu głównego zbliżających się do SMBH z masami BH
MBH ≈ (106 − 107) M⊙, Rt wynosi tylko kilka promieni
grawitacyjnych czarnej dziury. Dlatego ogólna teoria
względności (OTW) w naturalny sposób odgrywa rolę ważną
rolę w procesach zachodzących w TDE.
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Rozerwanie pływowe gwiazdy – Tidal Disruption Event
(TDE)
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Rozerwanie pływowe gwiazdy – Tidal Disruption Event
(TDE)
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Rozerwanie pływowe gwiazdy – Tidal Disruption Event
(TDE)

Lodato et al. (2015); góra: efekty relatywistyczne; dół orbity
keplerowskie; czas w jednostkach okresu orbitalnego

Szymon Kozłowski Astronomia Pozagalaktyczna



Rozerwanie pływowe gwiazdy – Tidal Disruption Event
(TDE)

Użyteczność:
Mogą się wydarzyć wokół (prawie) dowolnej BH,
pozwalając na badanie dystrybucji mas BH.
W maksimum są bardzo jasnymi obiektami, nawet
L ≈ 1045 erg/s. To czyni je obiektami obserwowanymi z
odległości kosmologicznych.
Pozwalają także na badanie fizyki gwiazd.
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Rozerwanie pływowe gwiazdy – Tidal Disruption Event
(TDE)

Leloudas G. et al. (2019)
Suvi Gezari (2021): L ∝ Ṁ ; całkowite TDE Ṁ ∝ t−5/3 lub częściowe TDE Ṁ ∝ t−9/4
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Rozerwanie pływowe gwiazdy – Tidal Disruption Event
(TDE)

van Velzen et al. (2021)
(W danej epoce dopasowywany jest Planck (dostajemy T), a następnie L ∝ 4πR2σT 4.)
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Rozerwanie pływowe gwiazdy – Tidal Disruption Event
(TDE)

van Velzen et al. (2021)

Szymon Kozłowski Astronomia Pozagalaktyczna



Rozerwanie pływowe gwiazdy – Tidal Disruption Event
(TDE)

Widma:
TDE mają bardzo szerokie linie emisyjne (FWHM ∼ 10
000 km/s) oraz linie wysoko wzbudzone HeII, czasami NIII
i OIII – mechanizm fluorescencji Bowena.
mają kontinuum, do którego pasuje funkcja Plancka (ciało
doskonale czarne).
Wykrycie linii Bowena wymaga istnienia fotonów EUV/X,
co przemawia za akrecją w TDE.
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Rozerwanie pływowe gwiazdy – Tidal Disruption Event
(TDE)

Leloudas G. et al. (2019)
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Rozerwanie pływowe gwiazdy – Tidal Disruption Event
(TDE)

Częstość
10−4 TDE/gal/yr

Praca przeglądowa
Suvi Gezari (2021): https://arxiv.org/pdf/2104.14580
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Szybkie błyski radiowe - Fast Radio Bursts (FRB)

Szymon Kozłowski Astronomia Pozagalaktyczna



Radioteleskop Parkes (Australii)
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Pulsary
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Szybkie błyski radiowe - Fast Radio Bursts (FRB)
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Szybkie błyski radiowe - Fast Radio Bursts (FRB)

Szybki błysk radiowy – są to przejściowe sygnały radiowe,
trwające milisekundy.

Odkrycie
Pierwszy sygnał FRB został odkryty w 2007 w trakcie
analizy archiwalnych danych obserwacyjnych przez zespół
pod kierownictwem D. R. Lorimera i znany jest jako
“Lorimer burst”.
Rozpoczęto poszukiwania radioteleskopwem Parkes,
znaleziono 16 FRB (ale okazało się, że to fake).
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Szybkie błyski radiowe - Fast Radio Bursts (FRB)

Właściwości
Odległości kosmologiczne
Wyznaczone na podstawie DM (gęstość gazu po drodze)
DM ∝ 1200 × z pc/cm3 dla z < 2
Bardzo jasne
Częstotliwość występowania – tysiące dziennie na całym
niebie, czyli są pospolite, ale ich pochodzenie nie jest znane!
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Szybkie błyski radiowe - Fast Radio Bursts (FRB)

Dispersion measure (DM)
Fale radiowe rozchodzące się w pustej przestrzeni docierają w
tym samym czasie.

Fale radiowe rozchodzące się w plazmie są opóźnione na niższych
częstoliwościach względem wyższych częstotliwości. Zakładając
rownomierne rozłożenie plazmy we Wszechświecie im dalej jest
obiekt, tym większa kolumna plazmy po drodze, tym większe
DM.

DM ∝
∫

nedl (5)

Opóźnienie czasowe sygnałów

∆t = t1 − t2 = DM

( 1
ν2

1
− 1

ν2
2

)
(6)
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Szybkie błyski radiowe - Fast Radio Bursts (FRB))

Błysk Lorimera, DM = 375 pc/cm3 → z = 0.3
(DM Galaktyki w tym kierunku 25 pc/cm3 pc)
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Szybkie błyski radiowe - Fast Radio Bursts (FRB)
Na dzień 15 maja 2024 roku znamy 931 FRBs (źródło: TNS)

Czym mogą być?
Rozmiar ∼ 1 ms = 3 × 108 m/s = 300 km → gwiazda
neutronowa?
Moc promieniowania 1040 – 1043 erg/s – w sumie nie
wskazuje na żaden konkretny typ obiektu.
Brak odnotowanych wspólnych zjawisk GRB/FRB.
Podejrzenie, że to magnetary (pulsary z gigantycznym
polem magnetycznym). Ale mechanizm inny niż omiatająca
wiązka (za mało energii), raczej“wybuchowy”.
Niektóre FRB powtarzają się. Druga, odrębna grupa FRB?
Kirsten et al. (2024): FRB 20201124A obserwowany prez
2000h (83 doby), znaleziono 46 błysków. Niepowtarzające
się FRB najprawdopodobniej są jednak powtarzające, tylko
powtórne FRB nie zostały po prostu zaoberwowane.
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