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Historia ewolucji Wszechswiata
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Historia ewolucji Wszechswiata
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Fig. 1. Overview of the main events discussed in this review, with the top axis showing the age of the universe and
the bottom axis the corresponding redshift, for the currently favored model (same parameters as in Fig. 2). Blue
represents atomic regions, and red, ionized regions. Matter in the universe recombined in a homogeneous manner at
z = 1200. Later, when the first stars formed and emitted ionizing radiation, ionized regions formed around the sources
that eventually overlapped, filling all of space. The size of the HIl regions should be much smaller on the redshift scale
than shown here and is drawn only for illustration.

Miralda-Escude et al. (2003)
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Dark Ages

l

Nie istnieja jeszcze Swiecace obiekty

Po rekombinacji, ~380000 lat po Wielkim Wybuchu, we
Wszech$wiecie nie ma “obiektéw $wiecacych”. Pierwsze gwiazdy
(Populacji IIT) pojawia sie ~ 150 mln lat pézniej (dominuja dla
z = 30-15).
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Large Scale Structure (LSS)

\

Wezesny Wszechswiat

Wezesny Wszech$wiat byl gtadki z drobnymi perturbacjami
gestoséci po Wielkim Wybuchu.

Zmiennos¢ gestosci opisana moze by¢ kontrastem gestosci
s=P—P_P_ 1, (1)
P P

gdzie p jest gestoscia w badanym obszarze, a p jest érednig
gestodcia materii.
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Large Scale Structure (LSS)

\

Niestabilnos¢ grawitacyjna

Poczatkowe obszary podwyzszonej gestosci ewoluuja zgodnie z
réwnaniem Jeansa (Peebles, réwnanie 5.124, era materii)

0% ad
99 497 — 4nGp 9
g 2y = 4GP 2)
Cs
AJ == 3

Dla materii w erze materii:

Obszar o rozmiarze A < Ay — oscylacje

Obszar o rozmiarze A > \; — dwa rozwiazania: §(t) o« a lub
5(t) oc a3/
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Large Scale Structure (LSS)

|

Gromady galaktyk tworza sie w wyniku serii potaczen
mniejszych systemow — wzrost hierarchiczny. Sa najwiekszymi
obiektami zwigzanymi grawitacyjnie we Wszech$wiecie.

Gromady galaktyk sg wrazliwe na parametry kosmologiczne i
dostarczaja silnych ograniczen na testy modeli kosmologicznych.}
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Large Scale Structure (LSS)
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Wielkoskalowa struktura WszechSwiata

Wszechswiat wokot nas jest izotropowy tylko w bardzo duzych
skalach, rzedu setek Mpc. W mniejszych skalach — od galaktyk
o gestosci ~10° do 10° razy wiekszej niz $rednia, po
supergromady galaktyk i pustek — Wszechswiat wykazuje
“strukture”.

Drobne perturbacje gestosci we wczesnym Wszech$wiecie rosna,
tworzac obserwowana strukture o duzej skali.

Szymon Kozlowski Kosmologia



Large Scale Structure (LSS)

2DF (1997-2003) https://www.roe.ac.uk/~jap/2df
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Large Scale Structure (LSS)

SDSS (po 2003): https://www.sdss4.org/science/
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Large Scale Structure (LSS)

\

Wielkoskalowa struktura Wszech$wiata

Istnienie kosmologicznych struktur méwi nam co$ waznego o
poczatkowych warunkach Wielkiego Wybuchu oraz o procesach
fizycznych, ktére miaty miejsce pdzniej.

Ogodlnie rzecz biorac, struktura bedzie rozwijaé sie¢ inaczej w
roznych modelach kosmologicznych. Zatem ze statystycznego
opisu wielkoskalowej struktury Wszechswiata mozemy
wydedukowaé najlepsze wartosci niektérych parametrow
kosmologicznych (gtéwnie Qpr, Qp, Hop).
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Large Scale Structure (LSS)
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Large Scale Structure (LSS)

Mozna zrobié¢ symulacje Wszechswiata.

Szymon Kozlowski Kosmologia



Large Scale Structure (LSS)

Flat Universe
N=0.7

Flat Universe
NA=0

kétka — gromady (najdalsza znana gromada z = 2.51)
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Large Scale Structure (LSS)
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The Millennium Simulation

W programie Millennium wykorzystano ponad 10 miliardéw
czastek, aby przesledzi¢ ewolucje rozktadu materii w
szeSciennym obszarze Wszechswiata o rozmiarze boku ponad 2
miliardéw lat $wietlnych.

Dzieki zastosowaniu wyrafinowanych technik do 25 TB
zapisanych wynikéw, naukowcy byli w stanie odtworzy¢ historie
ewolucji zaréwno dla okoto 20 milionéw galaktyk, ktore
wypelniaja ten ogromny obszar, jak i dla supermasywnych
czarnych dziur, ktére czasami zasilaja kwazary. Porownujac
takie symulowane dane z duzymi przegladami obserwacyjnymi,
mozna wyjasni¢ procesy fizyczne lezace u podstaw gromadzenia
sie prawdziwych galaktyk i czarnych dziur.

Szymon Kozlowski Kosmologia



The Millennium Simulation
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| The Millennium Simulation

LINK: The Millenium Simulation on Youtube

Kosmologowie wykorzystuja symulacje do badania
rozmieszczenia galaktyk i halo ciemnej materii w bardzo duzych
skalach oraz w jaki sposob powstaly najrzadsze i najbardziej
masywne struktury we Wszechswiecie.
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https://www.youtube.com/watch?v=yyfpFfWq7Bc

The Millennium Simulation

z2=183,2=57,2=141i2=0
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The Millennium Simulation

W 2010 roku przeprowadzono symulacje ,,Millennium XXL7”
(MXXL), przy uzyciu znacznie wiekszego szescianu (bok ma
ponad 13 miliardéw lat $wietlnych) i 67203 czastek, z ktérych
kazda reprezentuje 7 miliardow mas Stonica. MXXL obejmuje
przestrzen kosmologiczna 216 razy wieksza niz sze$cian
symulacyjny Millennium. Symulacja zostata przeprowadzona na
jednym z 15 najlepszych superkomputeréw na swiecie w 2010
roku. Wykorzystata ona ponad 12 000 rdzeni przez
réwnowartos¢ 300 lat czasu procesora, 30 terabajtéw pamieci
RAM i wygenerowata ponad 100 terabajtéw danych.

Do tej pory okoto 1000 opublikowanych artykutéw wykorzystato
dane z Millennium Run, co czyni go, przynajmniej pod tym
wzgledem, najbardziej wpltywows symulacja astrofizyczna
wszechczasow.
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Problem brakujacych satelitow.

7 symulacji numerycznych, ktére daja zgodne wyniki z roznymi
obserwcjami Wszechswia, wiemy ze otoczenie Drogi Mlecznej
powinno posiada¢ okoto 500 matych galaktyk. Natomiast znamy
ich 11. Czyli mamy “problem brakujacych satelitéw”.

v

Istniaty dwa pomysty, ktore moga rozwiazac¢ problem galaktyk
kartowatych: skupiska ciemnej materii o mniejszych rozmiarach
moga nie by¢ w stanie zgromadzi¢ lub zatrzymac¢ materii
barionowej potrzebnej do formowania sie gwiazd lub po
utworzeniu galaktyki kartowate moga zosta¢ szybko “zjedzone”
przez wieksze galaktyki, wokot ktérych kraza.

Rozwiazanie: doda¢ bariony w symulacjach! (Brooks et al. 2013) J
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Problem brakujacych
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The Illustris project

Projekt Illustris obejmowal wielkoskalowe kosmologiczne
symulacje ewolucji wszechswiata, obejmujace poczatkowe
warunki Wielkiego Wybuchu, az do dnia dzisiejszego, 13,8
miliarda lat p6zniej. Modelowanie, oparte na
najdoktadniejszych dostepnych danych i obliczeniach,
poréwnuje sie z faktycznymi odkryciami obserwowalnego
Wszechswiata, aby lepiej zrozumieé nature Wszechswiata, w
tym formowanie sie galaktyk, ciemng materie i ciemng energie.

Symulacja obejmowala wiele proceséw fizycznych, ktore uwaza
sie za krytyczne dla formowania sie galaktyk. Obejmuja one
powstawanie gwiazd i pézniejszy feedback w wyniku wybuchow
supernowych, a takze powstawanie supermasywnych czarnych
dziur, zuzywanie przez nie pobliskiego gazu i ich liczne tryby
energetycznego feedbacku.
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The Illustris project
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The Illustris project
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HST HUDF vs. The Illustris simulation
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Intergalactic Medium (IGM)

\

Wszechswiat ewoluowat od “prawie gladkiego rozktadu” dla
z ~ 1100, kiedy emitowane bylo mikrofalowe promieniowanie
tla, do ztozonych struktur, ktore widzimy dzisiaj.

Termin “o$rodek miedzygalaktyczny” (IGM) odnosi sie do
materii barionowej (gazu), ktéra nie wystepuje w zapadnietych
obiektach, takich jak gwiazdy, galaktyki i czarne dziury. W
momencie rekombinacji wszystkie bariony znajdowaly sie w
IGM. Nawet dzisiaj wiekszo$¢ barionéw znajduje sie w gazie
poza galaktykami.

Gestosc IGM

Gestos¢é IGM jest 5200 razy wieksza od $redniej gestosci
Wszechswiata.
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Intergalactic Medium (IGM)

Skad to wiemy?

Gestosé bariondéw zostala zmierzona na podstawie analizy
fluktuacji CMB i wynosi Q,h% = 0.0223 4 0.0002 (h = 0.7 to
stata Hubble’a Hy w jednostkach 100 km s~ Mpc™1).

7 drugiej strony, wielkoskalowe badania galaktyk w “pobliskim”
Wszechswiecie pozwolity nam skonstruowaé funkcje jasnosci
galaktyk w kilku pasmach dtugosci fal. Przy zatozeniach
dotyczacych stosunku masy do $wiatta (M/L ratio) funkcje
jasnosci galaktyk mozna przetozy¢ na funkcje masy galaktyk.
Calkujac funkcje masy galaktyk otrzymujemy

Qgwiaza = 0.0027 £ 0.0005 (np. Fukugita i Peebles 2004).
Poréwnujac Qgwiazd z Qph? widaé, ze gwiazdy (i pozostatosci po
gwiazdach) stanowia obecnie zaledwie ~6% calkowitego
budzetu barionéw.
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- Schechter Luminosity Function

Funkcja jasnosci

Funkcja jasnosci ®(L) opisuje wzgledna liczbe galaktyk o réznej
jasnodci. Jesli policzymy galaktyki w reprezentatywnej objetosci
Wszechswiata, ®(L) bedzie liczba galaktyk z zakresu jasnosci
miedzy L a L+ dL.

Wygodne przyblizenie funkcji jasnosci zostal zaproponowany
przez Paula Schectera w 1976 roku:

(4)

L\% L\ dL
(L)l = n, <L> exp (‘L*)L*

Wartoéci: n, =8 x 1073 Mpc ™3, L, = 1.4 x 10'° Ly, o = —0.7. |
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Schechter Luminosity F‘unctio_
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Intergalactic Medium (IGM)

Rozproszony gaz w oSrodku miedzygalaktycznym jest trudny do
bezposredniego wykrycia, poniewaz emitowane przez niego
Swiatto jest bardzo stabe.

Gdyby nie absorpcja obserwowana w widmach jasnych zrédet
tta, gléwnie kwazaréw (AGN/QSO) moglibysmy nie
zaobserwowa¢é osrodka miedzygalaktycznego. QSO sa jednymi z
najjasniejszych obiektow we Wszechéwiecie i dlatego mozna je
obserwowaé z bardzo duzych odlegtosci. Ich swiatto w drodze do
naszych teleskopéw przemierza rozlegla przestrzen kosmiczng.
Kazdy gaz, w galaktykach lub pomiedzy galaktykami, ktéry
przypadkowo znajdzie sie pomiedzy QSO a nami pozostawia
swoj slad w widmie QSO w postaci linii absorpcyjnych.
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Lyman alpha forest on Youtube

«O>» «F>» «=)r» «E)» = o>
Saymon Kostowski |


https://www.youtube.com/watch?v=6Bn7Ka0Tjjw

Intergalactic Medium (IGM)
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Figure 11.2: Optical spectrum of the ze, = 3.625 QSO Q1422+231 recorded with the

HIgh Resolution Echelle Spectrograph (HIRES) on the Keck I telescope (Reproduced
from S. Ellison’s Ph.D. thesis, University of Cambridge, 2000).
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Intergalactic Medium (IGM)
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Intergalactic Medium (IGM)
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Figure 11.3: Schematic representation of the energy levels of the hydrogen atom.
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Intergalactic Medium (IGM)

Figure 11.5: Typical output from a large-scale hydrodynamic simulation (this one is from
http://www.astro.princeton.edu/~cen/PROJECTS/p2/p2.html). The box is 25~ Mpc
(comoving) on the side, and it contains 768% ‘particles’ (a rather small number by today’s
standards—the simulations shown here are more than ten years old). The left panel shows
the distribution of all the gas within the box at z = 3, while on the right we have the
distribution of the neutral gas at the same epoch. It is possible to produce simulated Lyc
forest spectra by throwing sightlines through the cube, as if we were viewing a quasar
located behind the box. As we know precisely the physical properties of each particle in
the simulations, it is possible to connect these properties to the profiles of the absorption
lines in the fake spectra. Comparison with data then allows astronomers to interpret real
Lya forest spectra.
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Sktad chemiczny Wszechswiata - deuter

Minutes: 1/60 1 5 15 60

Mass Fraction

10 107
Temperature (109 K)

Burles, Nollett, & Turner 1999
https://arxiv.org/abs/astro-ph/9903300
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Deuter
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FIG. 1.— The spectra of Q1243+3047 from the KAST spectrograph (top), HIRES (middle) and ESI (bottom). We show the complete
wavelength coverage for the Kast and HIRES spectra, but not for the BSI, which extends to 10,000 A. We have applied relative flux calibration
to all three spectra. The emission lines blend to give a continuously undulating continuum level from 4400 — ortical marks
above the Kast and HIRES spectra show the positions of the Lyman series lines in the absorption system at z = 2.52 that gives the D/H
value. The Lya absorption line of this system, from which we get the H I column density, is near 4285 A, just to the left of the peak of the
Lya emission line. We do not plot most pixels, to reduce the file size.

Kirkman et al. (2003)
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Deuter
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FiG. 2.— Expansion of the Kast, EST and HIRES spectra from Figure 1. The Lya absorption near 4285 A is from the system in which we
measure D/H.

Dla deuteru przy Lya linia jest na —0.33A lub —81 km/s;
Kirkman et al. (2003)
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Deuter

Baryon to Photon Ratio n x 10710
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Fic. 32.— Comparison of predicted and measured abundances of four light nuclei as a function of the baryon density. The figure has
three vertical panels each with a different linear scale. The curves show the abundance ratios predicted for SBBN, from the calculations by
Burles Nollett and Turnr(2001). The top curve s the “He mass as a fraction of the mass of all baryons, while the three lower curves are the
number fractions He/H and Li/H. The vertical widths of the curves show the uncertainties in the predictions. The five boxes show
measurements, hets s vevil sSunion s e 16 Sasons error, and the horizontal range is adjusted to overlap the prediction curves. For
“He the larger box is from Oliye, Steigman and Sialluman (1907), and tho ertor includes in quadrature the eystematic error fmm Olive and
Skillman (2001). The smaller *He box is from Izotov & Thuan (1998). The D/H box is the mean from five QSOs from this paper. The He
from Bania, Rood & Balser (2002) is an upper fimit, The L3 i from Ryan et al (3000). W expect that ll the data bowes should overlap
the vertical band that covers the D/H data. They do not, probably because of systematic errors.

Kirkman et al. (2003)
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Powtérna Jonizacja

Billions of years ago
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Powtérna Jonizacja

W zasadzie rozumiemy epoke powtornej jonizacji:

o Pop III wzbogacity osrodek w metale i zapoczatkowaty
proces

o Pop II dokonczyty

e Akrecja na BH chyba nie miala wiekszego znaczenia (skoro
masa BH jest typowo 100x -1000x mniejsza od masy
gwiazd, to nawet przy 20 razy wiekszej wydajnosci nie
mogly by¢ znaczace)

o Efektu Gunna - Petersona nie obserwuje sie przy z < 6 — 7,
czyli wtedy proces jonizacji powinien sie byt zakonczyé
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Soczewkowanie grawitacyjne — strong lensing

galaxy cluster

distorted light-rays
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Soczewkowanie grawitacyjne
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| Soczewkowanie grawitacyjne
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Soczewkowanie grawitacyjne
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Soczewkowanie grawitacyjne
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Soczewkowanie grawitacyjne
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Soczewkowanie grawitacyjne
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Soczewkowanie grawitacyjne

Einstein Ring Gravitational Lenses Hubble Space Telescope = ACS

-, »

J073728.45+321618.5 J095629.77+510006.6 J120540.43+491029.3 J125028.25+052349.0

- | -

J140228.21+632133.5 J162746.44-005357.5 J163028.15+452036.2 J232120.93-093910.2
NASA, ESA, A. Bolton (Harvard-Smithsonian CfA), and the SLACS Team STScl-PRCO
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Soczewkowanie grawitacyjne
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Soczewkowanie grawitacyjne
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Soczewkowanie grawitacyjne

DIA of Q2237
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Soczewkowanie grawitacyjne
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Soczewkowanie grawitacyjne

Monthly Not

MNRAS 476, 663672 (2018) doi:10.1093/mnras/sty259
Advance Access publication 2018 February 1
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Soczewkowanie grawitacyjne

arcsec

Figure 1. The OGLE lensed quasar as seen in OGLE (top panels) and
GROND (bottom panels) is shown. The two lensed quasar images are marked
in the top left-hand panel, where A (B) is the brighter (fainter) image. They
are separated by 1.5arcsec and are readily resolvable in the best-seeing
OGLE frames of 0.7 arcsec. The top right-hand panel shows the colour
composition of /- and V-band frames. The bottom row presents g'r'i'z JHK
GROND observations (from the left- to right-hand panel). The lens galaxy
becomes visible as a blend to image B in the infrared data. All panels cover
approximately 8 x 8 arcsec. North is up and east s to the left-hand side.

A lensed quasar discovered in OGLE 665

Lya sV o ciy

T
NTT, BFOSC2, 12" slit, grism 13, seeing 0.5

2=2.16

rooA fvw«/’v\ VA N image A
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N VMJ \f»w YA \"\»li\,‘j»‘/w\m
05 Y
N

LN A

arb. flux

image B

SDSS mean QSO spectrum
L

1500 2000 2500

rest—frame A (A)

Figure 2. NTT spectra of the two images (A in red, B in blue) of the lensed
quasar. For comparison, in black, we also show a composite AGN spectrum
from Vanden Berk et al. (2001). The source redshift is zs = 2.16. Four
common quasar emission lines are marked with the vertical dotted lines and
labelled at the top.

straightforward identification of the lensed quasar candidate system
without extensive spectroscopic observations.

3 THE LENS SYSTEM
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Soczewkowanie grawitacyjne

image B appears to be brighter than A, but in fact the best SED
model of the lensing galaxy peaks around 2 um and dominates the
light of image B (bottom panel of Fig. 1 and top panel of Fig. 3).

3.5 The time delay

Time delays in gravitational lenses may be the key to understand-
ing the lens system, including its mass distribution, but also are
probes of i such as the Hubbl tant (e.g.
Blandford & Narayan 1986; Gorenstein, Shapiro & Falco 1988;
Kochanek 2002).

Time delay(s) are estimated from light curves of the two (or more)
images of the quasar. The necessary condition is that all light curves
cover the same variability pattern intrinsic to the quasar. This usu-
ally means a need for about several years-long, well-sampled light
curves having a good signal-to-noise (i.e. sufficiently bright im-
ages), because the typical AGN variability amplitude is small, a
few tenths of a magnitude, on a time-scale of months to years (e.g.
MacLeod et al. 2010; Koztowski 2016). If the separation between
the image(s) and the galaxy is small, or simply the galaxy is large
(as in the case of QSO 2237+-0305; e.g. Huchra et al. 1985; Udal-
ski et al. 2006), then one or more images may undergo secondary
microlensing by stars of the lensing galaxy. This happens rather fre-
quently and is the main reason of troubles with correctly estimating
time delays (e.g. Goicoechea et al. 1998; Tie & Kochanek 2018)
and the image flux ratios (e.g. Wyithe & Turner 2002), while on
the other hand enabling the of the intrinsic i
of the quasar accretion disc (its temperature profile and size, e.g.
Kochanek 2004; Dai et al. 2010; Morgan et al. 2012; Mosquera
etal. 2013).

A straightforward method to measure time delay(s) is the cross-
correlation (CC) of the two (or more) light curves, however be-
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Soczewkowanie grawitacyjne — weak lensing
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Ciemna materia — ptaskie krzywe rotacji galaktyk

THE ASTROPHYSICAL JOURNAL LETTERS, 870:L10 (Spp), 2019 January 1 Mr6z et al.
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Figure 2. Rotation curve of the Milky Way for Cepheids assuming Ry = 8.09 kpc and ©, = 233.6 kms ™! (model 2). Red data points represent high-mass star-

forming regions (Reid et al. 2014). Gray data points are taken from Sofue et al. (2009) and are rescaled to new (Ro, €) using formula Veew = Vo + 45(8 — 200).
Solid and dashed lines show the best-fitting models (linear and universal, respectively).
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Ciemna materia — mikrosoczewkowanie grawitacyjne
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Extended Data Figure 2 Number of gravitational microlensing events expected to be detected
by OGLE if entire dark matter were composed of compact objects of a given mass Nexp(f =1, M).
Thin solid lines correspond to fields observed during OGLE-III and OGLE-IV phases (from 2001 to
2020), dashed lines — fields observed during OGLE-IV only (from 2010 to 2020). Blue lines mark the
contribution from the Milky Way dark matter halo, red lines — the LMC dark matter halo.
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